로그인

Magnetic flux depends on three factors: the strength of the magnetic field, the area through which the field lines pass, and the field's orientation with respect to the surface area. If any of these quantities vary, a corresponding variation in magnetic flux occurs. If the area through which the magnetic field lines are passing changes, then the magnetic flux also changes. This change in the area can be of two types: the flux through the rectangular loop increases as it moves into the magnetic field, or the magnetic flux through the rotating coil changes.

If a conducting rod moves through a magnetic field perpendicular to the rod's motion, then an emf is induced in the rod. This induced emf produces an induced current when the conducting rod forms a closed conducting loop with a U-shaped conductor. The magnitude and the direction of the induced emf can be determined using Faraday's law and Lenz's law. In such systems, the conservation of energy demands that the power delivered because of the motion of the rod and the power dissipated because of the induced current are equal.

This principle can be seen in the operation of a rail gun. In a rail gun, the conducting rod is replaced with a projectile or weapon to be fired. In this type of gun, the optimal shutting off/ramping down of the magnetic field decreases the flux between the rails, causing a current to flow in the rod that holds the projectile. This current through the armature experiences a magnetic force and is propelled forward. Rail guns, however, are not used widely in the military due to the high cost of production and high currents.

Tags
Motional EMFMagnetic FluxMagnetic Field StrengthAreaOrientationInduced CurrentFaraday s LawLenz s LawConservation Of EnergyRail GunProjectileMagnetic ForceConducting RodClosed Loop

장에서 30:

article

Now Playing

30.4 : Motional Emf

Electromagnetic Induction

3.0K Views

article

30.1 : 유도

Electromagnetic Induction

3.7K Views

article

30.2 : 패러데이의 법칙

Electromagnetic Induction

3.7K Views

article

30.3 : 렌츠의 법칙

Electromagnetic Induction

3.3K Views

article

30.5 : 패러데이 디스크 다이나모

Electromagnetic Induction

1.9K Views

article

30.6 : 유도 전기장

Electromagnetic Induction

3.4K Views

article

30.7 : 유도 전기장: 응용 분야

Electromagnetic Induction

1.4K Views

article

30.8 : 와전류

Electromagnetic Induction

1.4K Views

article

30.9 : 변위 전류

Electromagnetic Induction

2.7K Views

article

30.10 : 변위 전류의 중요성

Electromagnetic Induction

4.2K Views

article

30.11 : 전자기장

Electromagnetic Induction

2.0K Views

article

30.12 : 맥스웰의 전자기학 방정식

Electromagnetic Induction

2.9K Views

article

30.13 : Maxwell 방정식의 대칭

Electromagnetic Induction

3.1K Views

article

30.14 : 암페어-맥스웰의 법칙: 문제 해결

Electromagnetic Induction

434 Views

article

30.15 : Maxwell 방정식의 미분 형식

Electromagnetic Induction

338 Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유