S'identifier

A position vector is a fundamental concept in mathematics that helps determine the position of one point with respect to another point in space. It is a vector that describes the direction and distance between two points. Position vectors are highly useful in the field of math and science, as they help represent spatial relationships and make calculations easier.

For instance, we want to locate a point P(x, y, z) relative to the origin of coordinates O. In that case, we can define a position vector r, which extends from the origin O to point P. We can express this vector in Cartesian vector form as: r = xi + yj + zk, where i, j, and k are the unit vectors in the x, y, and z directions, respectively. The position vector r gives us the direction and magnitude of the vector from point O to point P.

Consider a position vector directed from point A to point B in space. This vector can be denoted by the symbol r. We can also refer to this vector with two subscripts to indicate the points from and to which it is directed. Thus, we can also designate r as rAB. Please note that if the position vectors extend from the origin of coordinates, then they are referred to only with one subscript, as rA and rB. The position vector rAB can be obtained from rA and rB using the expression rAB = rB - rA= (xB - xA)i + (yB - yA)j + (zB - zA)k.

For example, to establish a position vector from point A to B, the coordinates of the tail A(1 m, m0, -3 m) are subtracted from the coordinates of the head B(-2 m, 2 m, 3 m), which yields rAB={ -3i + 2j + 6k} m.

Tags
Position VectorMathematicsSpatial RelationshipsCartesian Vector FormUnit VectorsCoordinatesMagnitudeDirectionVector NotationRABVector CalculationPoint APoint B

Du chapitre 2:

article

Now Playing

2.13 : Position Vectors

Force Vectors

669 Vues

article

2.1 : Scalaire et vecteurs

Force Vectors

1.1K Vues

article

2.2 : Opérations vectorielles

Force Vectors

1.1K Vues

article

2.3 : Introduction à la force

Force Vectors

422 Vues

article

2.4 : Force Classification

Force Vectors

1.0K Vues

article

2.5 : Addition vectorielle des forces

Force Vectors

537 Vues

article

2.6 : Système de force bidimensionnel

Force Vectors

802 Vues

article

2.7 : Système de force bidimensionnel : résolution de problèmes

Force Vectors

493 Vues

article

2.8 : Notation scalaire

Force Vectors

601 Vues

article

2.9 : Notation vectorielle cartésienne

Force Vectors

652 Vues

article

2.10 : Cosinus directeurs d’un vecteur

Force Vectors

370 Vues

article

2.11 : Système de force tridimensionnel

Force Vectors

1.8K Vues

article

2.12 : Système de force tridimensionnelle : résolution de problèmes

Force Vectors

564 Vues

article

2.14 : Vecteur de force le long d’une droite

Force Vectors

423 Vues

article

2.15 : Produit scalaire

Force Vectors

248 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.