A position vector is a fundamental concept in mathematics that helps determine the position of one point with respect to another point in space. It is a vector that describes the direction and distance between two points. Position vectors are highly useful in the field of math and science, as they help represent spatial relationships and make calculations easier.
For instance, we want to locate a point P(x, y, z) relative to the origin of coordinates O. In that case, we can define a position vector r, which extends from the origin O to point P. We can express this vector in Cartesian vector form as: r = xi + yj + zk, where i, j, and k are the unit vectors in the x, y, and z directions, respectively. The position vector r gives us the direction and magnitude of the vector from point O to point P.
Consider a position vector directed from point A to point B in space. This vector can be denoted by the symbol r. We can also refer to this vector with two subscripts to indicate the points from and to which it is directed. Thus, we can also designate r as rAB. Please note that if the position vectors extend from the origin of coordinates, then they are referred to only with one subscript, as rA and rB. The position vector rAB can be obtained from rA and rB using the expression rAB = rB - rA= (xB - xA)i + (yB - yA)j + (zB - zA)k.
For example, to establish a position vector from point A to B, the coordinates of the tail A(1 m, m0, -3 m) are subtracted from the coordinates of the head B(-2 m, 2 m, 3 m), which yields rAB={ -3i + 2j + 6k} m.
From Chapter 2:
Now Playing
Force Vectors
576 Views
Force Vectors
1.0K Views
Force Vectors
949 Views
Force Vectors
348 Views
Force Vectors
948 Views
Force Vectors
461 Views
Force Vectors
737 Views
Force Vectors
446 Views
Force Vectors
558 Views
Force Vectors
549 Views
Force Vectors
287 Views
Force Vectors
1.7K Views
Force Vectors
505 Views
Force Vectors
372 Views
Force Vectors
218 Views
See More
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved