Accedi

A position vector is a fundamental concept in mathematics that helps determine the position of one point with respect to another point in space. It is a vector that describes the direction and distance between two points. Position vectors are highly useful in the field of math and science, as they help represent spatial relationships and make calculations easier.

For instance, we want to locate a point P(x, y, z) relative to the origin of coordinates O. In that case, we can define a position vector r, which extends from the origin O to point P. We can express this vector in Cartesian vector form as: r = xi + yj + zk, where i, j, and k are the unit vectors in the x, y, and z directions, respectively. The position vector r gives us the direction and magnitude of the vector from point O to point P.

Consider a position vector directed from point A to point B in space. This vector can be denoted by the symbol r. We can also refer to this vector with two subscripts to indicate the points from and to which it is directed. Thus, we can also designate r as rAB. Please note that if the position vectors extend from the origin of coordinates, then they are referred to only with one subscript, as rA and rB. The position vector rAB can be obtained from rA and rB using the expression rAB = rB - rA= (xB - xA)i + (yB - yA)j + (zB - zA)k.

For example, to establish a position vector from point A to B, the coordinates of the tail A(1 m, m0, -3 m) are subtracted from the coordinates of the head B(-2 m, 2 m, 3 m), which yields rAB={ -3i + 2j + 6k} m.

Tags
Position VectorMathematicsSpatial RelationshipsCartesian Vector FormUnit VectorsCoordinatesMagnitudeDirectionVector NotationRABVector CalculationPoint APoint B

Dal capitolo 2:

article

Now Playing

2.13 : Position Vectors

Force Vectors

669 Visualizzazioni

article

2.1 : Scalari e vettori

Force Vectors

1.1K Visualizzazioni

article

2.2 : Operazioni vettoriali

Force Vectors

1.1K Visualizzazioni

article

2.3 : Introduzione alla forza

Force Vectors

422 Visualizzazioni

article

2.4 : Classificazione delle forze

Force Vectors

1.0K Visualizzazioni

article

2.5 : Addizione vettoriale di forze

Force Vectors

537 Visualizzazioni

article

2.6 : Sistema di forze bidimensionali

Force Vectors

802 Visualizzazioni

article

2.7 : Sistema di forze bidimensionale: risoluzione dei problemi

Force Vectors

493 Visualizzazioni

article

2.8 : Notazione scalare

Force Vectors

601 Visualizzazioni

article

2.9 : Notazione vettoriale cartesiana

Force Vectors

652 Visualizzazioni

article

2.10 : Coseni di direzione di un vettore

Force Vectors

370 Visualizzazioni

article

2.11 : Sistema di Forze Tridimensionali

Force Vectors

1.8K Visualizzazioni

article

2.12 : Sistema di Forze Tridimensionale:Risoluzione dei Problemi

Force Vectors

564 Visualizzazioni

article

2.14 : Vettore di forza lungo una linea

Force Vectors

423 Visualizzazioni

article

2.15 : Prodotto Dot

Force Vectors

248 Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati