JoVE Logo

S'identifier

2.15 : Dot Product

The dot product is an essential concept in mathematics and physics.

In engineering, the dot product of any two vectors is the product of the magnitudes of the vectors and the cosine of the angle between them. It is denoted by a dot symbol between the two vectors.

Consider a vehicle pulling an object along the ground using a rope. If the rope makes an angle with the horizontal axis, the work done can be calculated using the dot product of the force applied and the object's displacement.

The dot product of two vectors expressed in Cartesian form can be determined by multiplying their corresponding x, y, and z components and adding their products algebraically. This is given by the formula for the dot product of vectors A and B

Dot product equation, vector calculation formula, depicting components in a mathematical expression.

If the angle between two vectors is unknown, the dot product can help determine the angle using the inverse cosine function. Suppose A and B are two vectors, and the angle between them can be determined by:

Angle calculation using dot product formula, θ = cos⁻¹((A·B)/(AB)), mathematical concept.

The dot product follows the commutative and distributive laws of addition and multiplication. The dot product is a fundamental operation used in many areas of physics and engineering. It can calculate work done, find the angle between vectors, and determine force components along a specific direction. With its many applications, the dot product is an important concept in vector algebra.

Tags

Dot ProductVectorsMathematicsPhysicsEngineeringForceDisplacementCartesian FormAngle CalculationInverse Cosine FunctionCommutative LawDistributive LawVector AlgebraWork DoneForce Components

Du chapitre 2:

article

Now Playing

2.15 : Dot Product

Force Vectors

290 Vues

article

2.1 : Scalaire et vecteurs

Force Vectors

1.2K Vues

article

2.2 : Opérations vectorielles

Force Vectors

1.1K Vues

article

2.3 : Introduction à la force

Force Vectors

465 Vues

article

2.4 : Force Classification

Force Vectors

1.1K Vues

article

2.5 : Addition vectorielle des forces

Force Vectors

761 Vues

article

2.6 : Système de force bidimensionnel

Force Vectors

871 Vues

article

2.7 : Système de force bidimensionnel : résolution de problèmes

Force Vectors

539 Vues

article

2.8 : Notation scalaire

Force Vectors

651 Vues

article

2.9 : Notation vectorielle cartésienne

Force Vectors

732 Vues

article

2.10 : Cosinus directeurs d’un vecteur

Force Vectors

461 Vues

article

2.11 : Système de force tridimensionnel

Force Vectors

2.0K Vues

article

2.12 : Système de force tridimensionnelle : résolution de problèmes

Force Vectors

622 Vues

article

2.13 : Vecteurs de position

Force Vectors

793 Vues

article

2.14 : Vecteur de force le long d’une droite

Force Vectors

468 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.