Accedi

The dot product is an essential concept in mathematics and physics.

In engineering, the dot product of any two vectors is the product of the magnitudes of the vectors and the cosine of the angle between them. It is denoted by a dot symbol between the two vectors.

Consider a vehicle pulling an object along the ground using a rope. If the rope makes an angle with the horizontal axis, the work done can be calculated using the dot product of the force applied and the object's displacement.

The dot product of two vectors expressed in Cartesian form can be determined by multiplying their corresponding x, y, and z components and adding their products algebraically. This is given by the formula for the dot product of vectors A and B:

Equation 1

If the angle between two vectors is unknown, the dot product can help determine the angle using the inverse cosine function. Suppose A and B are two vectors, and the angle between them can be determined by:

Equation 1

The dot product follows the commutative and distributive laws of addition and multiplication. The dot product is a fundamental operation used in many areas of physics and engineering. It can calculate work done, find the angle between vectors, and determine force components along a specific direction. With its many applications, the dot product is an important concept in vector algebra.

Tags
Dot ProductVectorsMathematicsPhysicsEngineeringForceDisplacementCartesian FormAngle CalculationInverse Cosine FunctionCommutative LawDistributive LawVector AlgebraWork DoneForce Components

Dal capitolo 2:

article

Now Playing

2.15 : Dot Product

Force Vectors

248 Visualizzazioni

article

2.1 : Scalari e vettori

Force Vectors

1.1K Visualizzazioni

article

2.2 : Operazioni vettoriali

Force Vectors

1.1K Visualizzazioni

article

2.3 : Introduzione alla forza

Force Vectors

422 Visualizzazioni

article

2.4 : Classificazione delle forze

Force Vectors

1.0K Visualizzazioni

article

2.5 : Addizione vettoriale di forze

Force Vectors

538 Visualizzazioni

article

2.6 : Sistema di forze bidimensionali

Force Vectors

803 Visualizzazioni

article

2.7 : Sistema di forze bidimensionale: risoluzione dei problemi

Force Vectors

494 Visualizzazioni

article

2.8 : Notazione scalare

Force Vectors

602 Visualizzazioni

article

2.9 : Notazione vettoriale cartesiana

Force Vectors

659 Visualizzazioni

article

2.10 : Coseni di direzione di un vettore

Force Vectors

373 Visualizzazioni

article

2.11 : Sistema di Forze Tridimensionali

Force Vectors

1.9K Visualizzazioni

article

2.12 : Sistema di Forze Tridimensionale:Risoluzione dei Problemi

Force Vectors

566 Visualizzazioni

article

2.13 : Vettori di posizione

Force Vectors

669 Visualizzazioni

article

2.14 : Vettore di forza lungo una linea

Force Vectors

425 Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati