JoVE Logo

S'identifier

4.12 : Drug-Receptor Interaction: Agonist

Agonists are drugs that interact with specific receptors in the body to produce a biological response. When an agonist binds to a receptor, it activates or enhances the receptor's function, leading to physiological effects. The interaction between agonist drugs and receptors is crucial for their therapeutic action in various medical treatments.

Agonists can bind to receptors in different ways. Some agonists bind directly to the receptor's active site, mimicking the endogenous ligand's action. This results in the activation of the receptor and subsequent signal transduction within the cell. Other agonists may bind to allosteric sites on the receptor, modifying the receptor's conformation and enhancing its response to the endogenous ligand.

Understanding the interaction of agonist drugs with receptors is crucial for drug development and personalized medicine. Studying the interaction between agonists and receptors helps unravel the mechanisms underlying drug action and improve therapeutic strategies. Based on the affinity of agonists for a receptor and their efficacy in producing a response, agonists can be classified as full, partial, or inverse agonists.

For example, phenylepinephrine, a full agonist for α1-adrenoceptors, activates receptors in the nasal mucosa, causing vasoconstriction that helps reduce edema and congestion from the nasal cavity.

On the other hand, various partial agonists are used clinically to help with smoking and opiate addiction. Examples include buprenorphine and varenicline, which occupy all opiate and nicotinic receptors. These drugs activate their respective receptors sufficiently enough to stop the brain from craving their full agonists, heroin and nicotine, helping in the prevention of smoking and heroin consumption.

Inverse agonists mainly act on the receptors that show constitutive activity without a ligand. A recently developed drug, pimavanserin, an inverse agonist of the 5-HT2A receptor, treats hallucinations associated with Parkinson's disease.

Tags

Drug receptor InteractionAgonistsBiological ResponseReceptor ActivationSignal TransductionTherapeutic ActionPersonalized MedicineDrug DevelopmentFull AgonistPartial AgonistInverse AgonistPhenylephrineBuprenorphineVarenicline5 HT2A Receptor

Du chapitre 4:

article

Now Playing

4.12 : Drug-Receptor Interaction: Agonist

Pharmacodynamics

2.3K Vues

article

4.1 : Principes de l’action des médicaments

Pharmacodynamics

5.7K Vues

article

4.2 : Cibles d’action médicamenteuse : Vue d’ensemble

Pharmacodynamics

6.0K Vues

article

4.3 : Transduction du signal : Vue d’ensemble

Pharmacodynamics

8.2K Vues

article

4.4 : Mécanisme du transducteur : récepteurs couplés aux protéines G

Pharmacodynamics

1.8K Vues

article

4.5 : Récepteur de canal ionique ligand-dépendant : mécanisme de déclenchement

Pharmacodynamics

2.1K Vues

article

4.6 : Mécanisme du transducteur : récepteurs enzymatiques

Pharmacodynamics

2.3K Vues

article

4.7 : Mécanisme du transducteur : récepteurs nucléaires

Pharmacodynamics

1.3K Vues

article

4.8 : Relation dose-réponse : aperçu

Pharmacodynamics

2.9K Vues

article

4.9 : Relation dose-réponse : puissance et efficacité potentielle

Pharmacodynamics

4.2K Vues

article

4.10 : Relation dose-réponse : sélectivité et spécificité

Pharmacodynamics

6.4K Vues

article

4.11 : Indice thérapeutique

Pharmacodynamics

4.1K Vues

article

4.13 : Interaction médicament-récepteur : antagoniste

Pharmacodynamics

2.7K Vues

article

4.14 : Effets combinés des drogues : antagonisme

Pharmacodynamics

8.3K Vues

article

4.15 : Effets combinés des médicaments : synergie

Pharmacodynamics

3.7K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.