Accedi

Agonists are drugs that interact with specific receptors in the body to produce a biological response. When an agonist binds to a receptor, it activates or enhances the receptor's function, leading to physiological effects. The interaction between agonist drugs and receptors is crucial for their therapeutic action in various medical treatments.

Agonists can bind to receptors in different ways. Some agonists bind directly to the receptor's active site, mimicking the endogenous ligand's action. This results in the activation of the receptor and subsequent signal transduction within the cell. Other agonists may bind to allosteric sites on the receptor, modifying the receptor's conformation and enhancing its response to the endogenous ligand.

Understanding the interaction of agonist drugs with receptors is crucial for drug development and personalized medicine. Studying the interaction between agonists and receptors helps unravel the mechanisms underlying drug action and improve therapeutic strategies. Based on the affinity of agonists for a receptor and their efficacy in producing a response, agonists can be classified as full, partial, or inverse agonists.

For example, phenylepinephrine, a full agonist for α1-adrenoceptors, activates receptors in the nasal mucosa, causing vasoconstriction that helps reduce edema and congestion from the nasal cavity.

On the other hand, various partial agonists are used clinically to help with smoking and opiate addiction. Examples include buprenorphine and varenicline, which occupy all opiate and nicotinic receptors. These drugs activate their respective receptors sufficiently enough to stop the brain from craving their full agonists, heroin and nicotine, helping in the prevention of smoking and heroin consumption.

Inverse agonists mainly act on the receptors that show constitutive activity without a ligand. A recently developed drug, pimavanserin, an inverse agonist of the 5-HT2A receptor, treats hallucinations associated with Parkinson's disease.

Tags
Drug receptor InteractionAgonistsBiological ResponseReceptor ActivationSignal TransductionTherapeutic ActionPersonalized MedicineDrug DevelopmentFull AgonistPartial AgonistInverse AgonistPhenylephrineBuprenorphineVarenicline5 HT2A Receptor

Dal capitolo 4:

article

Now Playing

4.12 : Drug-Receptor Interaction: Agonist

Pharmacodynamics

2.2K Visualizzazioni

article

4.1 : Principi di azione farmacologica

Pharmacodynamics

5.5K Visualizzazioni

article

4.2 : Obiettivi per l'azione in materia di droga: panoramica

Pharmacodynamics

5.2K Visualizzazioni

article

4.3 : Trasduzione del segnale: panoramica

Pharmacodynamics

8.0K Visualizzazioni

article

4.4 : Meccanismo del trasduttore: recettori accoppiati a proteine G

Pharmacodynamics

1.6K Visualizzazioni

article

4.5 : Recettore del canale ionico ligando-dipendente: meccanismo di gating

Pharmacodynamics

1.9K Visualizzazioni

article

4.6 : Meccanismo del trasduttore: recettori enzimatici

Pharmacodynamics

2.2K Visualizzazioni

article

4.7 : Meccanismo del trasduttore: recettori nucleari

Pharmacodynamics

1.2K Visualizzazioni

article

4.8 : Relazione dose-risposta: panoramica

Pharmacodynamics

2.7K Visualizzazioni

article

4.9 : Relazione dose-risposta: potenza ed efficacia

Pharmacodynamics

3.9K Visualizzazioni

article

4.10 : Relazione dose-risposta: selettività e specificità

Pharmacodynamics

6.1K Visualizzazioni

article

4.11 : Indice terapeutico

Pharmacodynamics

3.8K Visualizzazioni

article

4.13 : Interazione farmaco-recettore: antagonista

Pharmacodynamics

2.4K Visualizzazioni

article

4.14 : Effetti combinati dei farmaci: antagonismo

Pharmacodynamics

7.5K Visualizzazioni

article

4.15 : Effetti combinati dei farmaci: sinergismo

Pharmacodynamics

3.0K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati