Entrar

Agonists are drugs that interact with specific receptors in the body to produce a biological response. When an agonist binds to a receptor, it activates or enhances the receptor's function, leading to physiological effects. The interaction between agonist drugs and receptors is crucial for their therapeutic action in various medical treatments.

Agonists can bind to receptors in different ways. Some agonists bind directly to the receptor's active site, mimicking the endogenous ligand's action. This results in the activation of the receptor and subsequent signal transduction within the cell. Other agonists may bind to allosteric sites on the receptor, modifying the receptor's conformation and enhancing its response to the endogenous ligand.

Understanding the interaction of agonist drugs with receptors is crucial for drug development and personalized medicine. Studying the interaction between agonists and receptors helps unravel the mechanisms underlying drug action and improve therapeutic strategies. Based on the affinity of agonists for a receptor and their efficacy in producing a response, agonists can be classified as full, partial, or inverse agonists.

For example, phenylepinephrine, a full agonist for α1-adrenoceptors, activates receptors in the nasal mucosa, causing vasoconstriction that helps reduce edema and congestion from the nasal cavity.

On the other hand, various partial agonists are used clinically to help with smoking and opiate addiction. Examples include buprenorphine and varenicline, which occupy all opiate and nicotinic receptors. These drugs activate their respective receptors sufficiently enough to stop the brain from craving their full agonists, heroin and nicotine, helping in the prevention of smoking and heroin consumption.

Inverse agonists mainly act on the receptors that show constitutive activity without a ligand. A recently developed drug, pimavanserin, an inverse agonist of the 5-HT2A receptor, treats hallucinations associated with Parkinson's disease.

Tags
Drug receptor InteractionAgonistsBiological ResponseReceptor ActivationSignal TransductionTherapeutic ActionPersonalized MedicineDrug DevelopmentFull AgonistPartial AgonistInverse AgonistPhenylephrineBuprenorphineVarenicline5 HT2A Receptor

Do Capítulo 4:

article

Now Playing

4.12 : Interação Fármaco-Receptor: Agonista

Farmacodinâmica

2.2K Visualizações

article

4.1 : Princípios da Ação de Fármacos

Farmacodinâmica

5.4K Visualizações

article

4.2 : Alvos para Ação de Fármacos: Visão Geral

Farmacodinâmica

5.2K Visualizações

article

4.3 : Transdução de Sinal: Visão Geral

Farmacodinâmica

8.0K Visualizações

article

4.4 : Mecanismo Transdutor: Receptores Acoplados à Proteína G

Farmacodinâmica

1.6K Visualizações

article

4.5 : Receptor Acoplado a Canais de Íons: Mecanismo de Abertura

Farmacodinâmica

1.9K Visualizações

article

4.6 : Mecanismo Transdutor: Receptores Ligados a Enzimas

Farmacodinâmica

2.2K Visualizações

article

4.7 : Mecanismo Transdutor: Receptores Nucleares

Farmacodinâmica

1.2K Visualizações

article

4.8 : Relação Dose-Resposta: Visão Geral

Farmacodinâmica

2.7K Visualizações

article

4.9 : Relação Dose-Resposta: Potência e Eficácia

Farmacodinâmica

3.9K Visualizações

article

4.10 : Relação Dose-Resposta: Seletividade e Especificidade

Farmacodinâmica

6.1K Visualizações

article

4.11 : Índice Terapêutico

Farmacodinâmica

3.8K Visualizações

article

4.13 : Interação Fármaco-Receptor: Antagonista

Farmacodinâmica

2.4K Visualizações

article

4.14 : Efeitos Combinados de Fármacos: Antagonismo

Farmacodinâmica

7.5K Visualizações

article

4.15 : Efeitos Combinados de Fármacos: Sinergismo

Farmacodinâmica

3.0K Visualizações

See More

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados