Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
L'objectif de ce protocole est de démontrer comment surveiller la dynamique des protéines étiquetées par fluorescence sur des surfaces de cellules végétales avec angle variable épifluorescence microscopie, montrant clignoter points de GFP-tagged PATR1, une protéine de trafic membranaire, dans le cortex cellulaire du complexe stomatique dans Arabidopsis thaliana.
A plant’s cell surface is its interface for perceiving environmental cues; it responds with cell biological changes such as membrane trafficking and cytoskeletal rearrangement. Real-time and high-resolution image analysis of such intracellular events will increase the understanding of plant cell biology at the molecular level. Variable angle epifluorescence microscopy (VAEM) is an emerging technique that provides high-quality, time-lapse images of fluorescently-labeled proteins on the plant cell surface. In this article, practical procedures are described for VAEM specimen preparation, adjustment of the VAEM optical system, movie capturing and image analysis. As an example of VAEM observation, representative results are presented on the dynamics of PATROL1. This is a protein essential for stomatal movement, thought to be involved in proton pump delivery to plasma membranes in the stomatal complex of Arabidopsis thaliana. VAEM real-time observation of guard cells and subsidiary cells in A. thaliana cotyledons showed that fluorescently-tagged PATROL1 appeared as dot-like structures on plasma membranes for several seconds and then disappeared. Kymograph analysis of VAEM movie data determined the time distribution of the presence (termed ‘residence time’) of the dot-like structures. The use of VAEM is discussed in the context of this example.
The plant cell surface, including the plasma membrane and its immediately adjacent cytoplasm, is the main region of a plant cell’s perception and integration of biotic and abiotic cues from the extracellular environment. In response to these cues, cell surface components including plasma membrane proteins and the cortical cytoskeleton undergo dynamic changes, on a time scale of seconds to minutes1-4. Thus, real-time and high-resolution imaging of fluorescent proteins on the cell surface can illuminate a plant’s responses to environmental cues at the molecular level.
Confocal laser scanning microscopy is a powerful tool for determination of fluorescently-tagged protein localization3, however, it is often difficult to monitor the real-time protein dynamics because of its relatively long capturing times. An emerging technique for real-time monitoring of proteins in the plant cell is variable angle epifluorescence microscopy (VAEM), which is an adaptation of equipment usually used for total internal reflection fluorescence (TIRF) microscopy. In TIRF microscopy, the fluorescence-excitation light source is an evanescent light field that is generated when the entry angle of the laser is shallow enough to totally internally reflect light at the glass–water interface. The penetration depth of the evanescent light field is around 100 nm. TIRF microscopy is an outstanding tool for single molecule imaging, such as the detection of exocytosis in animal cells5. However, evanescent light cannot reach plasma membranes or the cortical cytoplasm in plant cells, because they have thick cell walls. Recently, TIRF microscopy equipment has been adapted by plant cell biologists, observing that a laser, if angled slightly more deeply than when being used to induce total internal reflection phenomena, could excite the surface of plant cell samples, resulting in high-quality plant cell imaging6,7. The excitation illumination depth is varied by adjusting the entry angle of the laser; therefore, this technique is described as VAEM. This optical system is also called variable angle TIRF microscopy (VA-TIRFM) because there is a possibility that total reflection may take place at the cell wall-periplasm interface7, however, the term VAEM is used in this article, as per the first report in plants6.
The goal of this protocol is to demonstrate practical procedures for using VAEM to visualize fluorescently-tagged protein dynamics on plant cell surfaces. Additionally, an image analysis protocol to quantify the residence time (duration of presence) of molecules is described for VAEM movie analysis. GFP-PATROL1 dot blinking on stomatal complex cells in Arabidopsis thaliana cotyledons is used as an example. PATROL1 was identified by forward genetic approaches as a causal gene of a stomatal response defect mutant in A. thaliana8. PATROL1 is a plant homolog of MUNC-13, which is a priming factor in synapse vesicle exocytosis8. In response to environmental cues, such as light or humidity, it is thought that PATROL1 reversibly regulates the delivery of a proton pump to plasma membranes in the stomatal complex. Stomatal complexes each comprise a pair of guard cells8 and subsidiary cells9, and they require a proton pump for stomatal movement. In these cells, GFP-tagged PATROL1 localizes to dot-like structures that remain on the plasma membrane for less than 1 min9.
1. Préparation de semis
2. Sky Goutte montage des spécimens Cotylédon
REMARQUE: Un facteur important dans la préparation des échantillons pour l'observation VAEM est d'éviter l'inclusion de bulles d'air entre l'échantillon et le verre de protection. Bubbles réduisent considérablement la qualité de l'image en VAEM provoquant des différences dans l'indice de réfraction. Une méthode simple, que nous avons appelé «chute de ciel» de montage, peut être utilisé pour éviter les bullesentre l'A. cotylédons thaliana et le verre de protection. Cela devrait être fait immédiatement avant l'observation.
3. VAEM Observation et Movie Acquisition
Remarque: Le système de microscope TIRF 9 utilisé dans la présente étude est décrite comme suit: Un microscope inversé est équipé d'une unité de TIRF et une lentille d'objectif TIRF avec une ouverture numérique de 1,49. Pour le contrôle informatisé de l'angle d'entrée de laser, une boîte de contrôle est utilisé. La protéine fluorescente verte (GFP) est excité avec un 488 nm à pompage optique laser semi-conducteur, et til fluorescence est détectée à travers un filtre passe-bande de 510 à 550 nm pour empêcher autofluorescence de chloroplastes. La valeur maximale mesurée de la puissance de sortie de la fibre est de 13,0 à 13,5 mW. Pour la détection, une multiplication d'électrons dispositif à couplage de charge (CCD-EM) système de tête de caméra et une unité C-mount changement caméra de grossissement sont utilisés.
4. Analyse kymographe pour la quantification de la GFP marquée Dot Temps de résidence Utilisation Fidji Software
Dans cet article, de la vidéo, les protocoles d'observation VAEM de GFP-PATR1 dans A. cellules complexes thaliana cotylédons stomates sont fournis. Montage de chute de Sky est une méthode de préparation simple qui peut aider à réduire l'apparition de bulles d'air dans les préparations VAEM de A. cotylédons thaliana (Figure 1). Une inclinaison trop importante du laser d'entrée et / ou z-positionnement des spécimens pour VAEM fournira une image...
Dans cet article, de vidéo, les protocoles sont donnés pour surveiller et mesurer le comportement dynamique des points GFP-PATR1 sur le complexe stomatique de Arabidopsis thaliana. Comme indiqué ici, l'observation VAEM est un outil puissant pour l'imagerie en direct de la surface des cellules de la plante. Dans les conditions expérimentales utilisées ici pour la surveillance GFP-PATR1, il y avait très peu de photoblanchiment de fluorescence dans l'échantillon utilisé pendant 1 min de capture...
L'auteur n'a rien à révéler.
I am grateful to Dr. Masaru Fujimoto for his technical suggestions for VAEM. I am also grateful to Prof. Koh Iba and Dr. Mimi Hashimoto-Sugimoto for providing GFP-PATROL1 transgenic plants, and discussions about PATROL1. I thank Prof. Seiichiro Hasezawa for his continuing support of my work. This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI grant number 25711017.
Name | Company | Catalog Number | Comments |
Inverted microscope | Olympus | IX-73 | |
TIRF unit | Olympus | IX3-RFAEVAW | |
TIRF objective lens | Olympus | UAPON 100 × OTIRF | NA = 1.49 |
Laser angle control box | Chuo Seiki | QT-AK | |
Optically pumped semiconductor laser | Coherent | SapphireTM LP USB 488-20 CDRH Laser | |
510–550 nm band-pass filter | Olympus | U-FBNA | |
EM CCD camera | Hamamatsu Photonics | ImagEM C9100-13 | |
C-mount camera magnification change unit | Olympus | U-TVCAC | |
MetaMorph software | Molecular Devices | MetaMorph version 7.7.11.0 | |
TIRF microscopy manual | Olympus | AX7385 | Instructions: Total Internal Reflection Illumination System (Printed in Japan on August 24, 2012) |
Immersion oil | Olympus | Immersion Oil Typr-F | ne = 1.518 (23 degrees) |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon