Method Article
* Ces auteurs ont contribué à parts égales
Les mesures SEC-BioSAXS des macromolécules biologiques sont une approche standard pour déterminer la structure des solutions des macromolécules et de leurs complexes. Ici, nous analysons les données SEC-BioSAXS de deux types de traces de SEC couramment rencontrées : les chromatogrammes avec des pics entièrement résolus et partiellement résolus. Nous démontrons l’analyse et la déconvolution à l’aide de scatter et BioXTAS RAW.
BioSAXS est une technique populaire utilisée en biologie moléculaire et structurelle pour déterminer la structure de la solution, la taille et la forme des particules, le rapport surface/volume et les changements conformationnels des macromolécules et des complexes macromoléculaires. Un ensemble de données SAXS de haute qualité pour la modélisation structurale doit être à partir d’échantillons monodisperse et homogènes et cela n’est souvent atteint que par une combinaison de chromatographie inline et de mesure immédiate de SAXS. Le plus souvent, la chromatographie d’exclusion de taille est utilisée pour séparer les échantillons et exclure les contaminants et les agrégations de la particule d’intérêt permettant de faire des mesures SAXS à partir d’un pic chromatographique bien résolu d’une seule espèce protéique. Pourtant, dans certains cas, même la purification en ligne n’est pas une garantie d’échantillons de monodisperse, soit parce que plusieurs composants sont trop proches les uns des autres dans la taille ou les changements de forme induits par la liaison modifier le temps d’élitution perçue. Dans ces cas,, il peut être possible de déconvoluter les données SAXS d’un mélange pour obtenir les courbes SAXS idéalisées de composants individuels. Ici, nous montrons comment cela est réalisé et l’analyse pratique des données SEC-SAXS est effectuée sur des échantillons idéaux et difficiles. Plus précisément, nous montrons l’analyse SEC-SAXS de la vaccinia E9 ADN polymerase exonuclease moins mutant.
Les macromolécules biologiques sont trop petites pour être vues même avec les meilleurs microscopes légers. Les méthodes actuelles pour déterminer leurs structures impliquent généralement la cristallisation de la protéine ou des mesures sur un grand nombre de molécules identiques en même temps. Bien que la cristallographie fournit des informations sur le niveau atomique, elle représente un environnement d’échantillon artificiel, étant donné que la plupart des macromolécules ne sont pas présentées sous une forme cristalline dans la cellule. Au cours des deux dernières années, la microscopie cryo-électronique a livré des structures similaires à haute résolution de grands complexes macromolécules/macromoléculaires, mais bien que les échantillons soient plus proches de l’état physiologique, ils sont encore gelés, donc immobiles et statiques. La diffusion des rayons X à petit angle (BioSAXS) fournit une mesure structurelle de la macromolécule, dans des conditions pertinentes pour la biologie. Cet état peut être visualisé comme une forme 3D à basse résolution déterminée sur l’échelle nanométrique et capture tout l’espace conformationnel de la macromolécule en solution. Les expériences BioSAXS évaluent efficacement l’état oligomérique, le domaine et les arrangements complexes ainsi que la flexibilité entre lesdomaines 1,2,3. La méthode est précise, la plupart du temps non destructive et ne nécessite généralement qu’un minimum de préparation de l’échantillon et de temps. Toutefois, pour la meilleure interprétation des données, les échantillons doivent être monodisperse. C’est un défi; les molécules biologiques sont souvent sensibles aux contaminations, à une mauvaise purification et à une agrégation, par exemple à la dégelationdu gel 4. Le développement de la chromatographie inline suivie d’une mesure immédiate du SAXS permet d’atténuer ces effets. La chromatographie d’exclusion de taille sépare les échantillons par taille excluant ainsi la plupart des contaminants et agrégations5,6,7,8,9,10. Toutefois, dans certains cas, même sec-SAXS n’est pas suffisant pour produire un échantillon monodisperse, parce que le mélange peut se composer de composants qui sont trop proches en taille ou leurs propriétés physiques ou leur dynamique rapide conduire à des pics qui se chevauchent dans la trace UV SEC. Dans ces cas, une étape de déconvolution logicielle des données SAXS obtenues pourrait conduire à une courbe SAXS idéalisée du composantindividuel 5,11,12. À titre d’exemple, dans la section protocolaire 2, nous montrons l’analyse standard SEC-SAXS de la vaccinia E9 ADN polymése exonuclease moins mutant (E9 exomoins) en complexe avec de l’ADN. La vaccinia représente l’organisme modèle des Poxviridae, une famille contenant plusieurs agents pathogènes, par exemple le virus de la variole humaine. Il a été démontré que la polymése se lie étroitement à l’ADN dans les approches biochimiques, la structure du complexe ayant été récemment résolue par cristallographie aux rayons X13.
La plupart des installations de synchrotron fourniront un pipeline automatisé de traitement des données qui effectuera la normalisation et l’intégration des données produisant un ensemble d’images non sous-traitées. Mais l’approche décrite dans ce manuscrit pourrait également être utilisé avec une source de laboratoire à condition sec-SAXS est effectuée. En outre, une automatisation supplémentaire peut être disponible qui rejettera les cadres endommagés par les radiations et effectuera la soustraction tampon14. Nous montrerons comment effectuer l’analyse des données primaires sur les données pré-traitées et tirer le meilleur parti des données disponibles dans la section 2.
Dans la section 3, nous montrons comment déconvoluter les données SEC-SAXS et analyser efficacement les courbes. Bien qu’il existe plusieurs méthodes de déconvolution telles que la déconvolution du pic gaussien, mise en œuvre dans US-SOMO15 et la méthode de probabilité maximale optimisée Guinier, implémentée dans le logiciel DELA16, celles-ci nécessitent généralement un modèle pour la formede pointe 12. La taille limitée des pics individuels que nous étudions permet l’utilisation de l’analyse évolutive des facteurs (EPT), comme forme améliorée de décomposition de la valeur singulière (SVD) aux pics de chevauchement décontvolutes, sans s’appuyer sur la forme de pointe ou le profil de diffusion5,11. Une implémentation spécifique à SAXS se trouve dans BioXTAS RAW17. L’EPT a d’abord été utilisé sur les données de chromatographie lorsque les données du réseau de diodes 2D ont permis de former des matrices à partir de l’absorption par rapport au temps de rétention et aux données de longueurd’onde 18. Là où l’EPT excelle, c’est qu’il met l’accent sur le caractère évolutif des valeurs singulières, comment elles changent avec l’apparition de nouveaux composants, avec la mise en garde qu’il y a un ordre inhérent dans l’acquisition10. Heureusement, les données SEC-SAXS fournissent toutes les données d’acquisition ordonnées nécessaires dans les tableaux de données 2D organisés, se prêtant bien à la technique de l’EPT.
Dans la section 4, nous démontrerons les bases de l’analyse SAXS indépendante du modèle à partir de la courbe SAXS soustraite en arrière-plan tampon. L’analyse indépendante du modèle détermine le rayon de gyration (Rg) de la particule, le volume de corrélation (Vc), le volume de Porod (Vp) et l’exposant porod-debye (PE). L’analyse fournit une évaluation semi-quantitative de l’état thermodynamique de la particule en termes de compacité ou de flexibilité via la parcelle kratky sans dimension2,4,19.
Enfin, les données SAXS sont mesurées en unités spatiales réciproques et nous montrerons comment transformer les données SAXS en espace réel pour récupérer la fonction de distribution à distance paire, P(r). La distribution P(r) est l’ensemble de toutes les distances trouvées dans la particule et comprend la dimension maximale de la particule, dmax. Puisqu’il s’agit d’une mesure thermodynamique, la distribution P(r) représente l’espace physique occupé par l’espace conformationnel des particules. Une analyse appropriée d’un ensemble de données SAXS peut fournir des informations d’état de solution qui complètent les informations haute résolution de la cristallographie et du cryo-EM.
1. L’expression des protéines, la purification et la mesure SEC-SAXS sont basées sur le protocolepublié 13
2. Analyse primaire des données
3. Déconvolution des données
4. Déterminer les propriétés SAXS
REMARQUE : Un didacticiel détaillé pour la détermination SAXS se trouve à Bioisis.net. Ici, nous montrons une approche de base étape par étape, mettant en évidence les boutons les plus utiles dans Scatter.
L’avantage d’utiliser la déconvolution par rapport à la sélection classiquedu cadre 13 est d’éliminer l’influence des espèces les unes sur les autres, produisant un signal de diffusion monodisperse. Ceci est également souvent suivi d’un meilleur rapport signal/bruit. Lorsque e9 exomoins est lié à l’ADN et exécuté à l’aide de SEC-SAXS, deux pics sont observés ( Figure1). Le premier, grand pic (environ cadres 420\u2012475) est le complexe E9 exomoins-ADN le second (environ cadres 475\u2012540), l’état non lié (voir Données supplémentaires: Figure 2). Alors que l’approche classique de sélection des cadres fournit un Rg stable du complexe dans le premier pic (voir données supplémentaires: Figure 3), le deuxième pic est clairement fusionné et le Rg à travers la parcelle montre que le deuxième pic d’intérêt n’a pas un Rg stable, en raison de la contamination croisée. Seulement 5 cadres pouvaient être utilisés qui montraient un Rg semi-stable, lorsqu’ils étaient soustraits, ils donnaient un Rg = 36,3 Å(figure 2, vert). Lorsque les pics ont été décontaminés à l’aide de l’EPT, la courbe correspondante du deuxième pic(figure 2, bleu) a été superposée à l’original et a montré une nette diminution du signal au bruit, et un Rg inférieur, 34,1 Å a été enregistré. L’intrigue kratky (Figure 3) montre le complexe avec le pic décontvoluté (bleu) est plus globulaire. Ceci est confirmé par la courbe P(r) (Figure 4) qui donne un dmax 108.5 Å pour la courbe décontvolutée (bleu) tandis que le non-décontrvoluté est plus allongé avec un dmax 120 Å (vert), cela est très probablement dû à l’hétérogénéité résultant de l’exo E9 non liémoins.
Figure 1 : Parcelle de signal de l’exo E9moins seul et avec de l’ADN en complexe.
Le panneau supérieur montre une parcelle du rapport intégral à l’arrière-plan pour chaque image d’une course SEC-SAXS (bleu clair). Les points rouges montrent le Rg à chaque image au-dessus du pic. Le panneau inférieur montre la carte thermique correspondante montrant les résidus pour chaque image colorée selon l’analyse de corrélation automatique Durbin-Watson, les régions de haute similitude sont de couleur cyan tandis que les cadres dissemblables suivent des bleus plus foncés aux roses et enfin au rouge en fonction de la gravité de la dissemblable. S’il vous plaît cliquez ici pour voir une version plus grande de ce chiffre.
Figure 2 : Parcelle d’intensité par rapport au vecteur de diffusion.
Une superposition des données SAXS soustraites forme l’exo E9moins . Dans le vert 5 cadres (cadre 517\u2012522) en moyenne et soustrait d’une zone de Rg semi-stable et en bleu la courbe de diffusion représentative dérivée de la déconvolution de l’EPT du pic SEC-SAXS. S’il vous plaît cliquez ici pour voir une version plus grande de ce chiffre.
Figure 3 : Courbe de Kratky sans dimension.
La superposition de la courbe kratky décontvolutée (bleue) et non décontvolutée (verte) montrant E9 exomoins est globulaire. S’il vous plaît cliquez ici pour voir une version plus grande de ce chiffre.
Figure 4 : Courbe P(r).
La superposition des courbes décont alambiquées (bleues) et non décont alambiquées (vertes) pour l’exo E9moins. S’il vous plaît cliquez ici pour voir une version plus grande de ce chiffre.
Données supplémentaires. S’il vous plaît cliquez ici pour télécharger ce fichier
Il est souhaité d’avoir un échantillon monodisperse avant de commencer une expérience SAXS, mais en réalité, de nombreuses collections de données ne satisfont pas à cela et doivent être améliorées en combinant la mesure avec la chromatographie inline- SEC dans la plupart des cas. Cependant, même le manque de temps entre la purification et la monodispersité d’acquisition de données de l’échantillon n’est pas garanti. Le plus souvent, cela s’applique aux expériences où les composants sont trop proches en taille ou dans leurs propriétés physiques pour être séparés ou sont sujets à une dynamique rapide. Ici, nous avons fourni un protocole combinant décomposition de valeur unique avec l’analyse des facteurs en évolution pour supprimer l’influence de DNAbound E9 exomoins de son profil de diffusion monodisperse que nous avons ensuite été en mesure d’analyser avec le paquet SAXS Scatter IV.
SVD avec EFA de données SEC-SAXS sont des méthodes très puissantes développées pour déconvoluter les données SAXS et améliorer l’analyse, mais ils ont des limites. Ils exigent que le bruit ou la dérive dans la ligne de base tampon du SEC-SAXS soit maintenu au minimum. Cela peut impliquer un équilibre supplémentaire de la colonne (mieux vaut utiliser plus de 3 volumes de colonnes, selon le tampon) avant le chargement de l’échantillon. Toutefois, l’étape la plus critique est le choix du nombre de valeurs singulières et de la gamme de données utilisées, car cela affectera considérablement l’exactitude de la déconvolution. C’est pour cette raison que les résultats ne doivent pas être pris par eux-mêmes, mais analysés plus en détail à l’aide de techniques telles que l’ultracentrifugation analytique (AUC) ou la diffusion de la lumière laser à angle multiples (MALLS) pour l’interprétation biologique.
Scatter IV est un nouveau logiciel, gratuit pour la recherche et l’utilisation industrielle avec une interface utilisateur intuitive qui permet même aux non-experts d’analyser leurs données. Scatter IV a plusieurs nouvelles fonctionnalités qui aident à améliorer l’analyse des données SEC-SAXS, telles que la carte thermique liée à la parcelle de signal, permettant une plus grande précision avec le choix de la sélection du cadre. Dans l’analyse des données primaires, l’analyse guinier peak et le tracé de validation croisée associé à l’analyse P(r) offrent une capacité intégrée de dépannage dans le logiciel.
Il convient de mentionner que de nombreux autres programmes peuvent être utilisés pour l’analyse des données primaires; ceux-ci contiennent les mêmes caractéristiques de base et sont également mis à jour régulièrement tels que BioXTAS RAW17 ATSAS paquet24 et US-SOMO15 pour n’en nommer que quelques-uns.
Mais quel que soit le paquet SAXS utilisé pour l’analyse, les principales limitations sont communes : la préparation de l’échantillon, avant la collecte et l’analyse. Dans l’exemple E9 exomoins montré, il est clair de voir l’amélioration du rapport signal/bruit et avec une réduction du Rg le dmax associé à un échantillon monodisperse. Cela facilitera grandement le traitement ultérieur des données telles que le montage ou la modélisation avec des structures à haute résolution connues.
Les auteurs n’ont rien à divulguer.
Nous reconnaissons le soutien financier au projet de la subvention de Français REPLIPOX ANR-13-BSV8-0014 et par les subventions de recherche du Service de Santé des Armées et de la Délégation Générale pour l’Armement. Nous remercions l’ESRF pour le temps de faisceau SAXS. Ce travail a utilisé les plates-formes du centre Grenoble Instruct-ERIC (ISBG; UMS 3518 CNRS-CEA-UGA-EMBL) dans le cadre du Partenariat grenoblois pour la biologie structurale (PSB), soutenu par frisbi (ANR-10-INBS-05-02) et GRAL, financé au sein de l’Ecole supérieure grenoble Alpes (Ecoles Universitaires de Recherche) CBH-EUR-GS (ANR-17-EURE-0003). IBS reconnaît son intégration à l’Institut interdisciplinaire de recherche de Grenoble (IRIG, CEA). Nous remercions Wim P. Burmeister et le Pèreédéric Iseni pour leur soutien financier et scientifique et nous remercions également le Dr Jesse Hopkins de BioCAT à l’APS pour son aide et pour le développement de BioXTAS RAW.
Name | Company | Catalog Number | Comments |
Beamline control software BsXCuBE | ESRF | Pernot et al. (2013), J. Synchrotron Rad. 20, 660-664 | local development |
BioXTAS Raw 1.2.3. | MacCHESS | http://bioxtas-raw.readthedocs.io/en/latest/index.html | First developed in 2008 by Soren Skou as part of the biological x-ray total analysis system (BioXTAS) project. Since then it has been extensively developed, with recent work being done by Jesse B. Hopkins |
HPLC program LabSolutions | Shimadzu | n.a. | |
ISPyB | ESRF | De Maria Antolinos et al. (2015). Acta Cryst. D71, 76-85. | local development |
NaCl | VWR Chemicals (BDH Prolabo) | 27808.297 | |
Scatter | Diamond Light Source Ltd | http://www.bioisis.net/tutorial/9 | Supported by SIBYLS beamline (ALS berkeley, Ca) and Bruker Cororation (Karlsruhe, Germany) |
Superdex 200 Increase 5/150 GL column | GE Healthcare | 28990945 | SEC-SAXS column used |
Tris base | Euromedex | 26-128-3094-B |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon