S'identifier

Visualisation de l'écoulement après un corps non profilé

Vue d'ensemble

Source : Ricardo Mejia-Alvarez, Hussam Hikmat Jabbar et Mahmoud N. Abdullatif, département de génie mécanique, Michigan State University, East Lansing, MI

En raison du caractère non linéaire de ses lois dirigeants, un mouvement fluide induit des écoulements complexes. Comprendre la nature de ces modèles a fait l’objet d’un examen approfondi pendant des siècles. Bien que les ordinateurs personnels et les superordinateurs sont largement utilisés pour déduire des modèles d’écoulement de fluide, leurs capacités sont encore insuffisantes pour déterminer la viscosimétrie exacte pour des géométries complexes ou hautement inertiels flux (par exemple quelle impulsion domine résistance visqueuse). Dans cette optique, une multitude de techniques expérimentales pour faire flux motifs évidents ont été mis au point qui peut atteindre le débit outils inaccessibles aux théorique et computationnelle des régimes et des géométries.

Cette démonstration étudiera l’écoulement du fluide autour d’un corps de bluff. Un corps de bluff est un objet que, grâce à sa forme, causes séparé des flux sur la majeure partie de sa surface. Cette méthode diffère un corps profilé, comme une surface portante, qui est aligné dans le flux et provoque la séparation de l’écoulement. Le but de cette étude est d’utiliser les bulles d’hydrogène comme une méthode de visualisation des modèles d’écoulement. Les bulles d’hydrogène sont produits par électrolyse en utilisant une source d’alimentation CC en immergeant ses électrodes dans l’eau. Bulles d’hydrogène sont forment dans l’électrode négative, qui doit être un fil très fin pour que les bulles restent petits et suivre le mouvement du fluide plus efficacement. Cette méthode convient pour des écoulements laminaires stables et instables et est basée sur les lignes de flux de base qui décrivent la nature de l’écoulement autour des objets. [1-3]

Cet article se concentre sur la description de la mise en oeuvre de la technique, y compris des détails sur l’équipement et son installation. Ensuite, la technique est utilisée pour démontrer l’utilisation de deux des lignes de flux essentiel pour caractériser l’écoulement autour d’un cylindre circulaire. Ces lignes de flux sont utilisées pour estimer certains paramètres de débit importantes comme la vitesse d’écoulement et le nombre de Reynolds et de déterminer les modes d’écoulement.

Procédure

1. pour produire une feuille continue de bulles :

  1. Réglez l’appareil conformément au schéma électrique illustré à la Figure 3.
  2. Difficulté de l’électrode positive dans l’eau à l’extrémité aval de la section d’essai (pour référence, voir Figure 4 ).
  3. Fixer l’électrode négative en amont et près du point d’intérêt de libérer les bulles dans le flux avant que le débit atteint l’objet d’étude (pour référence, voir Figur

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Résultats

La figure 2 montre les deux résultats représentatifs de visualisation de bulles d’hydrogène d’un vortex de Von Kármàn rue. Figure 2 (A) montre un exemple d’un champ de streaklines comme en témoigne par des perturbations dans la feuille de bulles d’hydrogène. Cette image est utilisée pour extraire le diamètre de la tige en unités de machine. Figure 2 (B) montre un exemple d’un cham...

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Applications et Résumé

Dans cette étude, l’utilisation de bulles d’hydrogène a été démontrée pour extraire des informations qualitatives et quantitatives d’images de l’écoulement autour d’un cylindre circulaire. Les informations quantitatives extraites de ces expériences inclus la vitesse d’écoulement libre (), fréquence de délestage de vortex (), le nombre de Reynolds (Re) et le nombre de Strouhal (St). En particulier, le...

Log in or to access full content. Learn more about your institution’s access to JoVE content here

References
  1. Zöllner, F. Leonardo da Vinci 1452-1519: sketches and drawings, Taschen, 2004.
  2. White, F. M. Fluid Mechanics, 7th ed., McGraw-Hill, 2009.
  3. Adrian, Ronald J., and Jerry Westerweel. Particle Image Velocimetry. Cambridge University Press, 2011.
  4. Gerrard, J. H., The wakes of cylindrical bluff bodies at low Reynolds number, Phil. Trans. Roy. Soc. (London) Ser. A, Vol. 288, No. 1354, pp. 351-382 (1978)
  5. Coutanceau, M. and Bouard, R., Experimental determination of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow, J. Fluid Mech., Vol. 79, Part 2, pp. 231-256 (1977)
  6. Kovásznay, L. S. G., Hot-wire investigation of the wake behind cylinders at low Reynolds numbers, Proc. Roy. Soc. (London) Ser. A, Vol. 198, pp. 174-190 (1949)
  7. Fey, U., M. König, and H. Eckelmann. A new Strouhal-Reynolds-number relationship for the circular cylinder in the range . Physics of Fluids, 10(7):1547, 1998.
  8. Maas, H.-G., A. Grün, and D. Papantoniou. Particle Tracking in three dimensional turbulent flows - Part I: Photogrammetric determination of particle coordinates. Experiments in Fluids Vol. 15, pp. 133-146, 1993.
  9. Malik, N., T. Dracos, and D. Papantoniou Particle Tracking in three dimensional turbulent flows - Part II: Particle tracking. Experiments in Fluids Vol. 15, pp. 279-294, 1993.
  10. Tropea, C., A.L. Yarin, and J.F. Foss. Springer Handbook of Experimental Fluid Mechanics. Vol. 1. Springer Science & Business Media, 2007.
  11. Monaghan, J. J., and J. B. Kajtar. Leonardo da Vinci's turbulent tank in two dimensions. European Journal of Mechanics-B/Fluids. 44:1-9, 2014.
  12. Becker, H.A. Dimensionless parameters: theory and methodology. Wiley, 1976.
Tags
Flow VisualizationBluff BodyFlow PatternsVortex SheddingSeparationCircular CylinderBoundary LayerWakeVorticesLow PressureVon Karman Vortex StreetReynolds Number

Passer à...

0:07

Overview

0:55

Principles of Flow Separation

4:21

Producing Bubbles and Timelines in the Flow Facility

5:57

Setting up the Bluff Body

6:41

Studying and Analyzing the Von Karman Vortex Street

8:02

Representative Results

9:07

Applications

10:07

Summary

Vidéos de cette collection:

article

Now Playing

Visualisation de l'écoulement après un corps non profilé

Mechanical Engineering

11.8K Vues

article

Flottabilité et traînée sur les corps immergés

Mechanical Engineering

29.9K Vues

article

Stabilité des vaisseaux flottants

Mechanical Engineering

22.3K Vues

article

Propulsion et poussée

Mechanical Engineering

21.0K Vues

article

Réseaux de canalisations et pertes de charge

Mechanical Engineering

58.0K Vues

article

Refroidissement et ébullition

Mechanical Engineering

7.7K Vues

article

Ressauts hydrauliques

Mechanical Engineering

40.9K Vues

article

Analyse des échangeurs de chaleur

Mechanical Engineering

27.9K Vues

article

Introduction à la réfrigération

Mechanical Engineering

24.6K Vues

article

Anémomètre à fil chaud

Mechanical Engineering

15.5K Vues

article

Mesure des écoulements turbulents

Mechanical Engineering

13.5K Vues

article

Impact d'un jet sur un plan incliné

Mechanical Engineering

10.7K Vues

article

L'approche de la conservation de l'énergie pour l'analyse des systèmes

Mechanical Engineering

7.3K Vues

article

Conservation de la masse et mesures de débit

Mechanical Engineering

22.6K Vues

article

Détermination des forces d'impact sur une surface plane via la méthode des volumes de contrôle

Mechanical Engineering

25.9K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.