Cross Cylindrical Flow: Measuring Pressure Distribution and Estimating Drag Coefficients

Vue d'ensemble

Source: David Guo, College of Engineering, Technology, and Aeronautics (CETA), Southern New Hampshire University (SNHU), Manchester, New Hampshire

The pressure distributions and drag estimations for cross cylindrical flow have been investigated for centuries. By ideal inviscid potential flow theory, the pressure distribution around a cylinder is vertically symmetric. The pressure distribution upstream and downstream of the cylinder is also symmetric, which results in a zero-net drag force. However, experimental results yield very different flow patterns, pressure distributions and drag coefficients. This is because the ideal inviscid potential theory assumes irrotational flow, meaning viscosity is not considered or taken into account when determining the flow pattern. This differs significantly from reality.

In this demonstration, a wind tunnel is utilized to generate a specified airspeed, and a cylinder with 24 ports of pressure is used to collect pressure distribution data. This demonstration illustrates how the pressure of a real fluid flowing around a circular cylinder differs from predicted results based on the potential flow of an idealized fluid. The drag coefficient will also be estimated and compared to the predicted value.

Procédure

1. Measuring the pressure distribution around a cylinder

  1. Remove the top cover of the test section of a wind tunnel, and mount a clean, aluminum cylinder (d = 4 in) with 24 built-in ports on a turntable (Figure 3). Install the cylinder so that port zero is facing upstream (Figure 4a).
  2. Replace the top cover, and connect the 24 pressure tubes labeled 0 - 23 to the corresponding ports on the manometer panel. The manometer panel

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Résultats

Experimental results for the clean and disturbed cylinder are shown in Tables 1 and 2, respectively. The data can be plotted in a graph of the pressure coefficient, Cp, versus angular position, θ, for ideal and real flow as shown in Figure 6.

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Applications et Résumé

Cross cylindrical flow has been investigated theoretically and experimentally since the 18th century. Finding the discrepancies between the two allows us to expand our understanding of fluid dynamics and explore new methodologies. Boundary layer flow theory was developed by Prandtl [3] in early 20th century, and it is a good example of the extension of inviscid flow to viscid flow theory in solving D’Alembert’s Paradox.

In this experiment, the cross cylindrical flow was investigate

Log in or to access full content. Learn more about your institution’s access to JoVE content here

References
  1. d'Alembert, Jean le Rond (1752), Essai d'une nouvelle théorie de la résistance des fluides
  2. John D. Anderson (2017), Fundamentals of Aerodynamics, 6th Edition, ISBN: 978-1-259-12991-9, McGraw-Hill
  3. Prandtl, Ludwig (1904), Motion of fluids with very little viscosity, 452, NACA Technical Memorandum
Tags
Cross Cylindrical FlowMeasuring Pressure DistributionEstimating Drag CoefficientsFluid Flow Around A CylinderInviscid Potential Flow TheorySymmetric Pressure DistributionZero Net Drag ForceExperimental ResultsFlow PatternsViscosity Of FluidBoundary LayerViscous ForcesSkin Friction DragFlow SeparationLow Pressure WakePressure DifferentialReynolds NumberFluid DensityFree Stream Velocity

Passer à...

0:01

Concepts

3:01

Measuring the Pressure Distribution Around a Cylinder

5:11

Results

Vidéos de cette collection:

article

Now Playing

Cross Cylindrical Flow: Measuring Pressure Distribution and Estimating Drag Coefficients

Aeronautical Engineering

16.0K Vues

article

Performances aérodynamiques d'un modèle réduit d'avion : Le DC-6B

Aeronautical Engineering

8.1K Vues

article

Caractérisation de l'hélice : Variations du pas, du diamètre et du nombre de lame sur la performance

Aeronautical Engineering

26.0K Vues

article

Comportement de l'aile : Distribution de la pression sur une aile de Clark Y-14

Aeronautical Engineering

20.8K Vues

article

Performance des ailes du Clark Y-14 : Déploiement des dispositifs hypersustentateurs (volets et lamelles)

Aeronautical Engineering

13.2K Vues

article

Méthode des sphères de turbulence : Évaluation de la qualité de l'écoulement en soufflerie

Aeronautical Engineering

8.6K Vues

article

Variations du nombre de Mach et de la pression le long d'une tuyère convergente et d'une tuyère de Laval

Aeronautical Engineering

37.7K Vues

article

Imagerie Schlieren: Une technique pour visualiser les caractéristiques des écoulements supersoniques

Aeronautical Engineering

11.2K Vues

article

Visualisation de l'écoulement dans un tunnel hydrodynamique : Observation d'un tourbillon sur une aile Delta

Aeronautical Engineering

7.8K Vues

article

Visualisation de l'écoulement de colorants en surface : Une méthode qualitative pour visualiser les lignes de courant dans un écoulement supersonique

Aeronautical Engineering

4.8K Vues

article

Tube de Pitot : Un dispositif pour mesurer la vitesse du flux d'air

Aeronautical Engineering

48.4K Vues

article

Anémomètre à température constante : Un outil pour étudier les écoulements dans la couche limite turbulente

Aeronautical Engineering

7.1K Vues

article

Transducteur de pression : Calibrage à l'aide d'un tube de Pitot

Aeronautical Engineering

8.4K Vues

article

Contrôle de vol en temps réel : Étalonnage de capteurs embarqués et acquisition de données

Aeronautical Engineering

10.0K Vues

article

Aérodynamique des multicoptères : Caractérisation de la poussée sur un hexacoptère

Aeronautical Engineering

9.0K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.

Pressure port #