Sign In

A substance’s specific heat capacity refers to the amount of energy required to heat one gram of the substance by one degree. Water has a high heat capacity, so it takes a lot of heat to increase its temperature. Similarly, water must lose a lot of heat for its temperature to decrease, so it also cools slowly once heated. Metals, by comparison, have a low heat capacity—they heat up quickly and cool down quickly.

Specific heat capacity is defined as the amount of energy needed to raise the temperature of one gram of a substance by one degree Celsius (1 °C). For example, increasing the temperature of one gram of water by 1 °C requires one calorie of heat energy. Specific heat capacity is often represented in grams, degrees Celsius, and calories, but it can also be expressed in kilograms, Kelvin (K), and joules (among other units). The specific heat capacity of water is one calorie/gram °C, or 4186 joules/kilogram K. Solid gold has a specific heat capacity of ~0.03 calories/gram °C, or 129 joules/kilogram K. Gold, then, has a lower specific heat capacity than water.

Practical Nature

The high heat capacity of water helps modulate extreme environmental temperatures. Towns near large bodies of water have smaller changes in temperature both daily and seasonally. During the day, the nearby water absorbs heat energy, cooling the surrounding land. At night, the water releases its heat energy, keeping the area warmer. Towns far away from large bodies of water can experience large swings in daily and seasonal temperature. Sand and rocks have lower heat capacities, so they heat up quickly during the day and release heat quickly at night.

In space, water boils and then freezes. This happens in part because of water’s high heat capacity. In space, water first boils because of the extremely low pressure. In this gaseous state, the water vapor molecules are further apart and can lose heat quickly in the very cold temperatures of space. The water vapor then freezes into crystals—a process called desublimation.

Tags
Specific HeatHeat EnergyTemperature ChangeMassWaterRocksMolar MassSiliconeSandstoneMoleculesGramAbsorb EnergyRegulate TemperatureCoastal AreasLandlocked PlacesExtreme TemperaturesSubstanceCaloriesJoulesKilogramsKelvin

From Chapter 2:

article

Now Playing

2.20 : חום סגוי

Chemistry of Life

61.8K Views

article

2.1 : הטבלה המחזורית ויסודות אורגניזמיים

Chemistry of Life

168.9K Views

article

2.2 : מבנה אטומי

Chemistry of Life

189.0K Views

article

2.3 : התנהגות אלקטרון

Chemistry of Life

97.9K Views

article

2.4 : מודל האורביטלים האקלטרונים

Chemistry of Life

66.8K Views

article

2.5 : מולקולות ותרכובות

Chemistry of Life

95.7K Views

article

2.6 : צורות מולקולריות

Chemistry of Life

56.3K Views

article

2.7 : שלדי פחמן

Chemistry of Life

106.7K Views

article

2.8 : תגובות כימיות

Chemistry of Life

87.7K Views

article

2.9 : איזוטופיים

Chemistry of Life

56.1K Views

article

2.10 : קשרים קוולנים

Chemistry of Life

144.3K Views

article

2.11 : קשרים יונים

Chemistry of Life

116.8K Views

article

2.12 : קשרי מימן

Chemistry of Life

119.6K Views

article

2.13 : אינטראקציות ואן דר ואלס

Chemistry of Life

62.4K Views

article

2.14 : מצבים של מים

Chemistry of Life

50.2K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved