We describe here a protocol for the purification and characterization of plant protein complexes. We demonstrate that by immunoprecipitating a single protein within a complex, so we can identify its post-translational modifications and its interacting partners.
The paper describes a method for producing extreme nanowires by melt infiltration into carbon nanotubes and how 1D systems may be characterized and investigated using Resonance Raman Spectroscopy to determine vibrational and optical excitation energies.
A protocol is described for the characterization of the key electrochemical parameters of a boron doped diamond (BDD) electrode and subsequent application for in situ pH generation experiments.
We present a protocol on how to utilize high-throughput cryo-electron tomography to determine high resolution in situ structures of molecular machines. The protocol permits large amounts of data to be processed, avoids common bottlenecks and reduces resource downtime, allowing the user to focus on important biological questions.
The following paper presents a novel FE simulation technique (KBC-FE), which reduces computational cost by performing simulations on a cloud computing environment, through the application of individual modules. Moreover, it establishes a seamless collaborative network between world leading scientists, enabling the integration of cutting edge knowledge modules into FE simulations.
This paper investigates the suitability of inkjet printing for the manufacturing of dye-sensitized solar cells. A binder-free TiO2 nanoparticle ink was formulated and printed onto a FTO glass substrate. The printed layer was fabricated into a cell with an active area of 0.25 cm2 and an efficiency of 3.5%.
An inkjet printer was used to manufacture polyvinyl alcohol multilayers. Polyvinyl alcohol water-based ink was formulated, and the main physical properties were investigated.
A highly promising technique to generate tissue constructs without using matrix is to culture cells in a simulated microgravity condition. Using a rotary culture system, we examined ovarian follicle growth and oocyte maturation in terms of follicle survival, morphology, growth, and oocyte function under the simulated microgravity condition.
This paper elaborates the sample and sensor preparation procedures and the protocols for using the test rig particularly for dynamic domain imaging with in situ BH measurements in order to achieve optimal domain pattern quality and accurate BH measurements.
Imaging of bacterial cells is an emerging systems biology approach focused on defining static and dynamic processes that dictate the function of large macromolecular machines. Here, integration of quantitative live cell imaging and cryo-electron tomography is used to study Legionella pneumophila type IV secretion system architecture and functions.
This workflow can be used to perform antibiotic susceptibility testing using an established ex vivo model of bacterial biofilm in the lungs of individuals with cystic fibrosis. Use of this model could enhance the clinical validity of MBEC (minimal biofilm eradication concentration) assays.
Breast cancer cells exhibit different dielectric properties compared to non-tumor breast epithelial cells. It has been hypothesized that, based on this difference in dielectric properties, the two populations can be separated for immunotherapy purposes. To support this, we model a microfluidic device to sort MCF-7 and MCF-10A cells.
This protocol describes the formation of supported lipid bilayers and the addition of cytoskeletal filaments and motor proteins to study the dynamics of reconstituted, membrane-tethered cytoskeletal networks using fluorescence microscopy.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved