This technique demonstrates an efficient way to prepare replication-defective retroviral stocks encoding a human oncogene, and subsequently used for induction of myeloproliferative disease in the mouse model.
Primary dissociated midbrain dopamine cell cultures allow for the study of presynaptic characteristics of dopamine neurons. They can be used to monitor real-time dopamine release kinetics and protein/mRNA levels of regulators of dopamine exocytosis. Here, we show you how to generate these cultures from rodent neonates.
The monitoring of extracellular neurotransmitter levels in distinct brain regions of freely moving animals offers insights on the link between neurotransmitter release and behavior. In vivo microdialysis coupled with electrochemical detection provides excellent anatomical and chemical resolution; and information on how basal neurotransmission is altered by pharmacological or physiological manipulations.
We describe the isolation of neonatal cardiomyocytes and the preparation of the cells for encapsulation in fibrin hydrogel constructs for tissue engineering. We describe methods for analyzing the tissue engineered myocardium after the culture period including active force generated upon electrical stimulation and cell viability and immunohistological staining.
Silk films are a novel class of biomaterials readily customizable for an array of biomedical applications. The presented silk film culture system is highly adaptable to a variety of in vitro analyses. This system represents a biomaterial design platform offering in vitro optimization before direct translation to in vivo models.
Surgical stages of bladder augmentation are described using 3-D scaffolds in murine and rat models. To test the efficacy of biomaterial configurations for use in bladder augmentation, techniques for both awake and anesthetized cystometry are presented.
This study describes the procedures of setting up a novel neuronal axon and (astro)glia co-culture platform. In this co-culture system, manipulation of direct interaction between a single axon (and single glial cell) becomes feasible, allowing mechanistic analysis of the mutual neuron to glial signaling.
We describe a procedure for profiling salivary proteins using multiplexed microsphere-based antibody arrays. Monoclonal antibodies were covalently linked to fluorescent dye-encoded 4.5 μm polymer microspheres using carbodiimide chemistry. The modified microspheres were deposited in fiber-optic microwells to measure protein levels in saliva using fluorescence sandwich immunoassays.
We demonstrate the utility of nest building behavior in laboratory mice as an indicator of welfare. Nest scoring is a sensitive technique that is altered by temperature, illness, and aggression. The time to integrate into nest test (TINT) is a simple cage-side assessment that can detect postoperative pain.
Insight into the complex actions of the brain requires advanced research tools. Here we demonstrate a novel silk-collagen-based 3D engineered model of neural tissue resembling brain-like architecture. The model can be used to study neuronal network assembly, axonal guidance, cell-cell interactions and electrical activity.
In order to identify novel mutations affecting mechanosensation, we designed an assay that measures the behavioral response to tactile stimulation of fly bristles in mutant clones generated by the MARCM method. The combination of techniques allows for the identification of mechanosensitive mutations that would otherwise be lethal.
Here, a procedure to selectively activate a neuronal protein with a short pulse of light by genetically encoding a photo-reactive unnatural amino acid into a target neuronal protein expressed in neurons in culture or in vivo is presented.
We detail a method to fabricate three-dimensional paper-based microfluidic devices for use in the development of immunoassays. Our approach to device assembly is a type of multilayer, additive manufacturing. We demonstrate a sandwich immunoassay to provide representative results for these types of paper-based devices.
Handwashing is widely recommended to prevent infectious disease transmission. However, there is little evidence on which handwashing methods are most efficacious at removing infectious disease pathogens. We developed a method to assess the efficacy of handwashing methods at removing microorganisms.
This protocol describes how to induce the differentiation of M cells in human stem cell-derived ileal monolayers and methods to assess their development.
The present experiment combined three experimental procedures — a retrieval-practice learning manipulation, a list-discrimination task, and a stress-induction technique — to examine the influences of different learning strategies and acute stress on multiple measures of episodic memory.
A method of growing germ-free Napa cabbages has been developed which enables researchers to evaluate how single microbial species or multispecies microbial communities interact on cabbage leaf surfaces. A sterile vegetable extract is also presented which can be used to measure shifts in community composition during vegetable fermentation.
Described here is a method for utilizing zebrafish embryos to study the ability of functionalized nanoparticles to target human cancer cells in vivo. This method allows for the evaluation and selection of optimal nanoparticles for future testing in large animals and in clinical trials.
Using quantum-dot-labeled DNA and total internal reflection fluorescence microscopy, we can investigate the reaction mechanism of restriction endonucleases while using unlabeled protein. This single-molecule technique allows for massively multiplexed observation of individual protein-DNA interactions, and data can be pooled to generate well-populated dwell-time distributions.
This paper describes a novel mouse model for the transition of pneumococcus from an asymptomatic colonizer to a disease-causing pathogen during viral infection. This model can be readily adapted to study polymicrobial and host-pathogen interactions during the different phases of disease progression and across various hosts.
Here, we outline the procedure for analyzing replication progression through pathogenic, structure-prone repeats using 2-dimensional gel electrophoresis.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved