A method is described to measure three-dimensional vestibulo ocular reflexes (3D VOR) in humans using a six degrees of freedom (6DF) motion simulator. The gain and misalignment of the 3D angular VOR provide a direct measure of the quality of vestibular function. Representative data on healthy subjects are provided
This method outlines the use of Quantum Micro-Computed Tomography (MicroCT) to assess cardiac morphology, function, perfusion, metabolism and viability with iodinated contrast agent in mice with experimentally-induced myocardial ischemia. The technique can be applied for non-destructive high-throughput longitudinal in vivo imaging of various animal models of human heart disease.
Here we present a protocol to assess cardiopulmonary function in awake swine, at rest and during graded treadmill exercise. Chronic instrumentation allows for repeated hemodynamic measurements uninfluenced by cardiodepressive anesthetic agents.
A method is described to quantify the quality of visual information processing based on reflexive eye movements in response to specific visual modalities. Reaction times and fixation output parameters are used to characterize visual performance in children with and without visual impairments from 6 months of age.
This protocol describes the intravital imaging of transgenic mice expressing cell-specific fluorescent markers. Intravital imaging provides a non-invasive method for high-resolution observations in living animals using implantable windows through which the microscopic visualization of processes is possible. This method is especially useful to study longitudinal processes.
Live-cell imaging is a powerful tool to visualize dynamic processes. The examination of fixed cells provides only static pictures, which can lead to misinterpretation and confusion about the process. This work presents a method to study uptake, drug release, and intracellular localization of liposomal nanoparticles in living cells.
We describe a non-invasive multimodal imaging approach based on Micro-CT and fluorescence molecular tomography for longitudinal assessment of the mouse lung fibrosis model induced by double intratracheal instillation of bleomycin.
We present a protocol for ex vivo cultivation of human ventricular myocardial tissue. It allows for detailed analysis of contraction force and kinetics, as well as the application of pre- and afterload to mimic the in vivo physiological environment more closely.