Murine left ventricular papillary muscle can be used to investigate cardiac contractility in vitro. This article describes in detail the isolation and experimental protocols to study cardiac contractile characteristics.
This protocol targets specific cells in tissue for imaging at nanoscale resolution using a scanning electron microscope (SEM). Large numbers of serial sections from resin-embedded biological material are first imaged in a light microscope to identify the target and then in a hierarchical manner in the SEM.
Here, we present a protocol to isolate and cultivate murine peritoneal mast cells. We also describe two protocols for their functional characterization: a fluorescent imaging of intracellular free Ca2+ concentration and a degranulation assay based on colorimetric quantification of the released β-hexosaminidase.
Here we describe a cardiac pressure-volume loop analysis under increasing doses of intravenously infused isoproterenol to determine the intrinsic cardiac function and the β-adrenergic reserve in mice. We use a modified open-chest approach for the pressure-volume loop measurements, in which we include ventilation with positive end-expiratory pressure.