Accedi

Norwegian University of Science and Technology

5 ARTICLES PUBLISHED IN JoVE

image

Environment

Extraction of Structural Extracellular Polymeric Substances from Aerobic Granular Sludge
Simon Felz 1, Salah Al-Zuhairy 1, Olav Andreas Aarstad 2, Mark C.M. van Loosdrecht 1, Yue Mei Lin 1
1Department of Biotechnology, Delft University of Technology, 2Department of Biotechnology, Norwegian Biopolymer Laboratory (NOBIPOL), Norwegian University of Science and Technology

The protocol provides a methodology to solubilize aerobic granular sludge in order to extract alginate-like extracellular polymers (ALE).

image

Neuroscience

Homochronic Transplantation of Interneuron Precursors into Early Postnatal Mouse Brains
Giulia Quattrocolo 1, Maria Isaac 2, Yajun Zhang 2, Timothy J. Petros 2
1Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, 2Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health

Challenging young neurons in new brain regions can reveal important insights into how the environment sculpts neuronal fate and maturation. This protocol describes a procedure to harvest interneuron precursors from specific brain regions and transplant them either homotopically or heterotopically into the brain of postnatal pups.

image

Neuroscience

Event Related Potentials (ERPs) and other EEG Based Methods for Extracting Biomarkers of Brain Dysfunction: Examples from Pediatric Attention Deficit/Hyperactivity Disorder (ADHD)
Geir Ogrim 1,2,3, Juri D. Kropotov 4,5
1Neuropsychiatric Team, Åsebråten Outpatient Clinic, Østfold Hospital Trust, 2Institute of Psychology, Norwegian University of Science and Technology, 3Gillberg Neuropsychiatry Centre, University of Gothenburg, 4P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, 5Department of Neuropsychology, Andrzej Frycz-Modrzewski Krakow University

EEG-methods are applied for extracting biomarkers of brain dysfunctions. The focus is on multi-channel event-related potentials (ERPs) recorded in a cued GO/NOGO task. Non-brain artifacts are corrected and ERPs are compared with the normative data. Examples relate to biomarkers for ADHD diagnosis and prediction of medication response.

image

Bioengineering

Real-Time Intravital Multiphoton Microscopy to Visualize Focused Ultrasound and Microbubble Treatments to Increase Blood-Brain Barrier Permeability
Charissa Poon 1,2, Melina Mühlenpfordt *3, Marieke Olsman *3, Spiros Kotopoulis 4,5, Catharina de Lange Davies 3, Kullervo Hynynen 1,2,6
1Physical Sciences Platform, Sunnybrook Research Institute, 2Institute of Biomedical Engineering, University of Toronto, 3Department of Physics, Norwegian University of Science and Technology, 4Department of Clinical Medicine, University of Bergen, 5Exact Therapeutics AS, 6Department of Medical Biophysics, University of Toronto

This protocol describes the surgical and technical procedures that enable real-time in vivo multiphoton fluorescence imaging of the rodent brain during focused ultrasound and microbubble treatments to increase blood-brain barrier permeability.

image

Bioengineering

Multi-timescale Microscopy Methods for the Characterization of Fluorescently-labeled Microbubbles for Ultrasound-Triggered Drug Release
Charlotte Nawijn 1, Tim Segers 1,2, Guillaume Lajoinie 1, Ýrr Mørch 3, Sigrid Berg 4,5,6, Sofie Snipstad 3,6,7, Catharina de Lange Davies 7, Michel Versluis 1
1Physics of Fluids group, Department of Science and Technology, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, 2BIOS Lab-on-a-Chip group, Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center, University of Twente, 3Department of Biotechnology and Nanomedicine, SINTEF Industry, 4Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 5Department of Health Research, SINTEF Digital, 6Cancer Clinic, St. Olav’s Hospital, 7Department of Physics, Norwegian University of Science and Technology

The presented protocols can be used to characterize the response of fluorescently-labeled microbubbles designed for ultrasound-triggered drug delivery applications, including their activation mechanisms as well as their bioeffects. This paper covers a range of in vitro and in vivo microscopy techniques performed to capture the relevant length and timescales.

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2024 MyJoVE Corporation. Tutti i diritti riservati