Inflammation plays a central role in the pathogenesis of ischemic stroke. Increasing evidence suggests that it acts as a double-edged sword which exacerbates early brain injury, but also contributes to later repair. This protocol describes the isolation of immune cells from the ischemic brain and their subsequent flow cytometric phenotyping.
Semiflexible polymers display unique mechanical properties that are extensively applied by living systems. However, systematic studies on biopolymers are limited since properties such as polymer rigidity are inaccessible. This manuscript describes how this limitation is circumvented by programmable DNA nanotubes, enabling experimental studies on the impact of filament rigidity.
Here we present a protocol to lyse cyanobacteria and green algae single cells that allows for subsequent single-cell whole genome amplification in a microfluidic platform with a 100% success rate.