JoVE Logo

Accedi

2.4 : Modello atomico a orbitali

Panoramica

Gli orbitali sono le aree al di fuori del nucleo dell'atomo dove gli elettroni hanno maggiori probabilità di risiedere. Sono caratterizzati da diversi livelli di energia, forme e orientamenti tridimensionali.

La posizione di un elettrone all'interno di un atomo corrisponde ad un livello di energia e ad una forma orbitale

La posizione degli elettroni è descritta più in generale da un guscio o da un livello di energia principale, quindi da un sottoguscio all'interno di ogni guscio e, infine, da singoli orbitali trovati all'interno dei sotto-guscie. Il primo guscio è più vicino al nucleo, e ha un solo sotto-guscio con un singolo orbitale sferico, chiamato l'orbitale 1s, che può contenere due elettroni. Il guscio successivo contiene otto elettroni totali: due nell'orbitale sferico 2s orbitale e due in ciascuno dei tre orbitali "dumbbell-shaped" (a forma di manubrio) 2p. Nei livelli di energia più elevati, gli orbitali più esterni, quelli che si trovano nei sotto-gusci d e f, assumono forme più complesse. Un totale di 10 elettroni possono rientrare nei cinque orbitali d, e 14 elettroni totali rientrano nei sette orbitali f.

I diagrammi orbitali possono essere utilizzati per visualizzare la posizione e i livelli di energia relativi di ogni elettrone in un atomo. All'interno di ogni guscio, gli elettroni hanno un livello crescente di energia. Il guscio s ha la più bassa quantità di energia. Gli elettroni nel sottoguscio p hanno un'energia leggermente superiore, seguiti da quelli nel sottoguscio d e f se sono presenti.

Il modello Bohr ha introdotto il concetto di orbitali

Abbiamo visto che gli elettroni in orbitali diversi hanno diversi livelli di energia. Come facciamo a sapere che c'è energia negli elettroni, e tanto meno che gli elettroni possono avere quantità diverse di energia? Nel 1913, Niels Bohr fu in grado di determinare sperimentalmente quanta energia veniva acquisita e persa quando gli elettroni cambiavano orbitali in un atomo di idrogeno e in altri ioni con un singolo elettrone. Combinando i risultati dei suoi esperimenti con la conoscenza preliminare di un nucleo caricato positivamente dal lavoro di Ernest Rutherford, Bohr sviluppò il primo modello di orbitali elettronici.

Quando gli elettroni guadagnano energia, entrano in uno stato eccitato e saltano ad orbitali superiori. L'energia può essere aggiunta agli elettroni sotto forma di calore o luce, e quando perdono rapidamente quell'energia, ricadono dall'orbita dell'orbitale superiore ed emettono una particella di luce chiamata fotone. Il colore del fotone emesso corrisponde ad una quantità specifica di energia tale che possa essere quantificato da uno spettroscopio.

Bohr è stato in grado di determinare l'energia contenuta nei principali livelli di energia, chiamati anche gusci, riscaldando l'idrogeno. L'energia termica aggiuntiva ha costretto l'elettrone a saltare dal primo livello di energia a livelli più elevati. Bohr ha poi misurato la lunghezza d'onda della luce che è stata emessa quando gli atomi si sono raffreddati di nuovo.

Il modello meccanico quantistico dell'atomo

Il modello di Bohr di orbitali elettronici presupponeva che gli elettroni orbitavano intorno al nucleo in percorsi circolari fissi. Mentre i suoi esperimenti erano accurati per l'idrogeno e gli ioni simili all'idrogeno con un singolo elettrone, non poteva prevedere le configurazioni degli elettroni di altri elementi. Ci dovevano essere altri fattori che influenzavano la fisica delle particelle subatomiche.

Nel 1926 Erwin Schrodeinger espanse il modello di Bohr dei livelli di energia e sviluppò il modello di orbitali atomici che è ancora accettato oggi. Schroedinger prese in considerazione una serie di altre scoperte per quanto riguarda il comportamento fisico degli elettroni che furono fatti dagli scienziati nei primi anni 1920. Il suo modello meccanico quantistico predice con precisione le configurazioni elettroniche di elementi con più elettroni. Un cambiamento fondamentale nel modello di Schroedinger è l'ipotesi che gli elettroni viaggino in un moto d'onda influenzato dalla carica positiva del nucleo. Per questo motivo, gli orbitali di cui parliamo oggi sono aree simili a nuvole in cui è più probabile che si trovino elettroni piuttosto che percorsi circolari fissi come Bohr ha proposto. Un'altra distinzione fondamentale è la divisione dei livelli di energia di Bohr, conchiglie, in categorie più piccole, subshell e orbitali.

Tags

Electron OrbitalEnergy LevelsOrbitalsNucleusS OrbitalP OrbitalsD OrbitalsElectron ConfigurationSodium Electron ConfigurationShellPrincipal Energy LevelSubshellAtomic Nucleus

Dal capitolo 2:

article

Now Playing

2.4 : Modello atomico a orbitali

Chimica della vita

67.2K Visualizzazioni

article

2.1 : La tavola periodica e gli elementi dell'organismo

Chimica della vita

173.0K Visualizzazioni

article

2.2 : Struttra atomica

Chimica della vita

190.2K Visualizzazioni

article

2.3 : Comportamento degli elettroni

Chimica della vita

98.2K Visualizzazioni

article

2.5 : Molecole e composti

Chimica della vita

96.1K Visualizzazioni

article

2.6 : Geometria delle molecole

Chimica della vita

56.6K Visualizzazioni

article

2.7 : Scheletri di carbonio

Chimica della vita

107.0K Visualizzazioni

article

2.8 : Reazioni chimiche

Chimica della vita

88.1K Visualizzazioni

article

2.9 : Isotopi

Chimica della vita

56.4K Visualizzazioni

article

2.10 : Legami covalenti

Chimica della vita

144.9K Visualizzazioni

article

2.11 : Legami ionici

Chimica della vita

117.4K Visualizzazioni

article

2.12 : Legami a idrogeno

Chimica della vita

120.1K Visualizzazioni

article

2.13 : Forze di Van der Waals

Chimica della vita

62.9K Visualizzazioni

article

2.14 : Stati dell'acqua

Chimica della vita

50.3K Visualizzazioni

article

2.15 : pH

Chimica della vita

132.9K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati