Accedi

Since the discovery of the two BER pathways, there has been a debate about how a cell chooses one pathway over the other and the factors determining this selection. Numerous in vitro experiments have pointed out multiple determinants for the sub-pathway selection. These are:

  1. Lesion type: Depending on the type of base damage, a specific DNA glycosylase - mono or bifunctional, is recruited to the damaged site. While the sequential action of a monofunctional glycosylase favors long patch repair events, the bifunctional glycosylase drives short-patch BER.
  1. State of the cell cycle: The major protein participants that distinguish the long-patch BER from the alternative pathway of short-patch BER are proliferating cell nuclear antigen (PCNA), protein replication factor C (RF-C), and the flap structure-specific endonuclease 1 (FEN1). PCNA is particularly recognized as the lynchpin of this pathway. It acts both as the scaffold to anchor the polymerase at the damaged site and binds to FEN-1 to facilitate its nuclease activity. Furthermore, RF-C is required to load the PCNA onto the DNA. All of these proteins are also required during DNA replication, suggesting that long-patch BER mends damages to replicating DNA while short-patch is used for repairing resting DNA.
  1. ATP shortage: It has also been observed that while single nucleotide or short patch BER predominates under normal physiological conditions, under conditions of ATP shortage, the preference is shifted towards long-patch BER. This is because poly(ADP-ribose) can serve as a unique source of ATP during the ligation step in BER.
Tags
Long patch Base Excision RepairATP ShortageDNA PolymeraseNucleotidesFlapOligonucleotidesProliferating Cell Nuclear AntigenPCNAFlap EndonucleaseDNA LigaseIonizing RadiationBER PathwaysSub pathway SelectionDNA GlycosylaseMonofunctional GlycosylaseBifunctional GlycosylaseCell Cycle

Dal capitolo 7:

article

Now Playing

7.3 : Long-patch Base Excision Repair

DNA Riparazione e Ricombinazione

6.9K Visualizzazioni

article

7.1 : Riparazione del DNA

DNA Riparazione e Ricombinazione

26.8K Visualizzazioni

article

7.2 : Base Excision Repair

DNA Riparazione e Ricombinazione

21.3K Visualizzazioni

article

7.4 : Nucleotide Excision Repair

DNA Riparazione e Ricombinazione

10.9K Visualizzazioni

article

7.5 : DNA polimerasi di translesione

DNA Riparazione e Ricombinazione

9.6K Visualizzazioni

article

7.6 : Riparazione delle rotture a doppio filamento

DNA Riparazione e Ricombinazione

11.7K Visualizzazioni

article

7.7 : Il danno al DNA può arrestare il ciclo cellulare

DNA Riparazione e Ricombinazione

8.9K Visualizzazioni

article

7.8 : Ricombinazione omologa

DNA Riparazione e Ricombinazione

49.4K Visualizzazioni

article

7.9 : Riavvio delle forche di replicazione bloccate

DNA Riparazione e Ricombinazione

5.7K Visualizzazioni

article

7.10 : Conversione genica

DNA Riparazione e Ricombinazione

9.5K Visualizzazioni

article

7.11 : Trasposizione e ricombinazione

DNA Riparazione e Ricombinazione

14.8K Visualizzazioni

article

7.12 : Trasposoni a DNA

DNA Riparazione e Ricombinazione

14.0K Visualizzazioni

article

7.13 : Retrovirus

DNA Riparazione e Ricombinazione

11.6K Visualizzazioni

article

7.14 : Retrotrasposoni LTR

DNA Riparazione e Ricombinazione

17.1K Visualizzazioni

article

7.15 : Retrotrasposoni non-LTR

DNA Riparazione e Ricombinazione

11.2K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati