로그인

Since the discovery of the two BER pathways, there has been a debate about how a cell chooses one pathway over the other and the factors determining this selection. Numerous in vitro experiments have pointed out multiple determinants for the sub-pathway selection. These are:

  1. Lesion type: Depending on the type of base damage, a specific DNA glycosylase - mono or bifunctional, is recruited to the damaged site. While the sequential action of a monofunctional glycosylase favors long patch repair events, the bifunctional glycosylase drives short-patch BER.
  1. State of the cell cycle: The major protein participants that distinguish the long-patch BER from the alternative pathway of short-patch BER are proliferating cell nuclear antigen (PCNA), protein replication factor C (RF-C), and the flap structure-specific endonuclease 1 (FEN1). PCNA is particularly recognized as the lynchpin of this pathway. It acts both as the scaffold to anchor the polymerase at the damaged site and binds to FEN-1 to facilitate its nuclease activity. Furthermore, RF-C is required to load the PCNA onto the DNA. All of these proteins are also required during DNA replication, suggesting that long-patch BER mends damages to replicating DNA while short-patch is used for repairing resting DNA.
  1. ATP shortage: It has also been observed that while single nucleotide or short patch BER predominates under normal physiological conditions, under conditions of ATP shortage, the preference is shifted towards long-patch BER. This is because poly(ADP-ribose) can serve as a unique source of ATP during the ligation step in BER.
Tags
Long patch Base Excision RepairATP ShortageDNA PolymeraseNucleotidesFlapOligonucleotidesProliferating Cell Nuclear AntigenPCNAFlap EndonucleaseDNA LigaseIonizing RadiationBER PathwaysSub pathway SelectionDNA GlycosylaseMonofunctional GlycosylaseBifunctional GlycosylaseCell Cycle

장에서 7:

article

Now Playing

7.3 : 긴 패치 염기 절제 복구

DNA 복구/회복과 재조합

6.9K Views

article

7.1 : DNA 복구/회복 개요

DNA 복구/회복과 재조합

27.1K Views

article

7.2 : 염기 절제 복구

DNA 복구/회복과 재조합

21.4K Views

article

7.4 : 뉴클레오타이드 절제 복구

DNA 복구/회복과 재조합

11.0K Views

article

7.5 : 손상통과 DNA 중합효소

DNA 복구/회복과 재조합

9.6K Views

article

7.6 : 두 가닥 절단 복구

DNA 복구/회복과 재조합

11.8K Views

article

7.7 : DNA 손상에 의한 세포 주기 중단

DNA 복구/회복과 재조합

8.9K Views

article

7.8 : 상동재조합

DNA 복구/회복과 재조합

49.5K Views

article

7.9 : 멈춘 복제 분기점의 재시작

DNA 복구/회복과 재조합

5.7K Views

article

7.10 : 유전자 전환

DNA 복구/회복과 재조합

9.5K Views

article

7.11 : 전위와 재조합 개요

DNA 복구/회복과 재조합

14.8K Views

article

7.12 : DNA 한정 트랜스포존

DNA 복구/회복과 재조합

14.1K Views

article

7.13 : 레트로바이러스

DNA 복구/회복과 재조합

11.8K Views

article

7.14 : LTR 레트로트랜스포존

DNA 복구/회복과 재조합

17.1K Views

article

7.15 : 비LTR 레트로트랜스포존

DNA 복구/회복과 재조합

11.2K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유