Accedi

Consider the electric field of an oppositely charged, parallel-plate system and an imaginary box between those plates. Let the bottom face of the box be ABCD, and the top face be FGHK. The electric field between the plates is uniform and points from the positive plate toward the negative plate. The calculation of this field's flux through the box's various faces shows that the net flux through the box is zero. Why does the flux cancel out here?

Figure1

The electric flux through the bottom face becomes negative as the electric field is in the opposite direction compared to the surface's normal vector. Conversely, the electric flux through the top face becomes positive as the electric field and the normal are in the same direction. The electric flux through the other faces is zero since the electric field is perpendicular to the normal vectors of those faces. The net electric flux through the box is the sum of the fluxes through the six faces. Here, the net flux through the box is equal to zero. The magnitude of the flux through the rectangle BCKF inside the box equals the magnitudes of the flux through both the top and bottom faces.

In brief, the reason for the flux canceling out is that the electric field sources are outside the box. This means that if the electric field line enters the box's volume, it must also exit somewhere on the surface because there is no charge inside for the lines to land on. Therefore, generally, the electric flux through a closed surface is zero if there are no electric field sources, including either positive or negative charges, inside the enclosed volume.

Tags
Electric FluxElectric FieldParallel plate SystemImaginary BoxNet FluxPositive PlateNegative PlateSurface Normal VectorFlux CancellationClosed SurfaceCharge EnclosureElectric Field Sources

Dal capitolo 23:

article

Now Playing

23.2 : Calculation of Electric Flux

Gauss's Law

1.6K Visualizzazioni

article

23.1 : Flusso elettrico

Gauss's Law

7.3K Visualizzazioni

article

23.3 : Legge di Gauss

Gauss's Law

6.7K Visualizzazioni

article

23.4 : Legge di Gauss: risoluzione dei problemi

Gauss's Law

1.5K Visualizzazioni

article

23.5 : Legge di Gauss: Simmetria sferica

Gauss's Law

7.0K Visualizzazioni

article

23.6 : Legge di Gauss: simmetria cilindrica

Gauss's Law

7.1K Visualizzazioni

article

23.7 : Legge di Gauss: Simmetria planare

Gauss's Law

7.5K Visualizzazioni

article

23.8 : Campo elettrico all'interno di un conduttore

Gauss's Law

5.7K Visualizzazioni

article

23.9 : Carica su un conduttore

Gauss's Law

4.3K Visualizzazioni

article

23.10 : Campo elettrico sulla superficie di un conduttore

Gauss's Law

4.4K Visualizzazioni

article

23.11 : Campo elettrico di una sfera non uniformemente caricata

Gauss's Law

1.3K Visualizzazioni

article

23.12 : Campo elettrico di piastre conduttrici parallele

Gauss's Law

725 Visualizzazioni

article

23.13 : Divergenza e curvatura del campo elettrico

Gauss's Law

5.0K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati