Accedi

Consider a truss structure, as shown in the figure.

Figure 1

Forces F1 and F2 act at joints B and D, respectively. The method of sections can be employed to determine the forces acting on specific members of the truss, such as EF, DC, and DF. This approach is based on the principle that a truss in equilibrium also has each of its segments in equilibrium.

To calculate the forces acting on these members, a free-body diagram of the truss is considered. The equilibrium equation for moments about joint A can be applied to estimate the support reaction at point E.

Equation 1

A cut is made along a sectional plane that intersects a maximum of three members: EF, DC, and DF. Next, a free-body diagram of the right side of the cut section is drawn, assuming the unknown forces as tensile.

Figure 2

A solution for the force acting on member EF can be obtained by summing moments about joint D.

Equation 2

The unknown inclined forces, FDC and FDF, are resolved into horizontal and vertical components. Applying the equilibrium condition for the forces along the horizontal and vertical directions results in two separate equations.

Equation 3

Equation 4

The forces along members DC and DF can be estimated by solving these simultaneous equations.

Tags
Method Of SectionsTruss StructureForces F1 And F2Joints B And DFree body DiagramEquilibrium EquationSupport ReactionMembers EFDCDFTensile ForcesSumming MomentsInclined ForcesHorizontal ComponentsVertical ComponentsSimultaneous Equations

Dal capitolo 6:

article

Now Playing

6.7 : Method of Sections

Structural Analysis

509 Visualizzazioni

article

6.1 : Introduzione alle strutture

Structural Analysis

913 Visualizzazioni

article

6.2 : Tralicci semplici

Structural Analysis

1.4K Visualizzazioni

article

6.3 : Metodo delle giunzioni

Structural Analysis

643 Visualizzazioni

article

6.4 : Metodo delle articolazioni: risoluzione dei problemi I

Structural Analysis

937 Visualizzazioni

article

6.5 : Metodo delle articolazioni: risoluzione dei problemi II

Structural Analysis

438 Visualizzazioni

article

6.6 : Membro a forza zero

Structural Analysis

1.2K Visualizzazioni

article

6.8 : Metodo delle sezioni: Risoluzione dei problemi I

Structural Analysis

435 Visualizzazioni

article

6.9 : Metodo delle sezioni: Risoluzione dei problemi II

Structural Analysis

832 Visualizzazioni

article

6.10 : Tralicci spaziali

Structural Analysis

707 Visualizzazioni

article

6.11 : Tralicci spaziali: risoluzione dei problemi

Structural Analysis

523 Visualizzazioni

article

6.12 : Fotogrammi

Structural Analysis

473 Visualizzazioni

article

6.13 : Frames: Risoluzione dei problemi I

Structural Analysis

355 Visualizzazioni

article

6.14 : Frames: Risoluzione dei problemi II

Structural Analysis

162 Visualizzazioni

article

6.15 : Macchine

Structural Analysis

214 Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati