JoVE Logo

Accedi

6.8 : Method of Sections: Problem Solving I

Consider a symmetrical roof truss structure, composed of vertical, diagonal, and horizontal members. The length of each horizontal member is 4 m. The lengths of the vertical members FB and HD are 4 m, while the length of member GC is 6 m. The loads acting at joints F, G, and H are 2 kN, while those at joints A and E are 1 kN.

Static equilibrium diagram; forces on a truss beam with labeled force vectors F1-F5 and reactions RA, RE.

The method of sections is employed to calculate the forces acting on members DC and HC. The moment equilibrium condition is applied to point A, and the known values of forces and distances are substituted into the moment equation.

Static equilibrium equation diagram with torque balance formula ΣF(d)=0, illustrating forces.

This results in an estimated reaction force of 4 kN at point E. Subsequently, the vertical force equilibrium condition at point A reveals that the reaction force at A is also 4 kN.

Static equilibrium equation ΣF=0; diagram for force analysis in mechanical systems.

Due to the symmetry of the truss, the reaction forces at points A and E are equal.

The forces acting on members DC and HC can be obtained upon determining the reaction forces. A sectional cut is made along a plane intersecting members DC, HC, and HG, and a free-body diagram of the smaller section is considered.

Static equilibrium diagram with force vectors; truss analysis; ΣFx=0, ΣFy=0, moments at joints.

By summing the moments about point H, the force along DC is calculated to be a positive 3 kN, indicating a tensile force.

Equilibrium equation, ΣF=0, static equilibrium, formula for force distribution analysis.

The force along CH is resolved into its sine and cosine components. Trigonometry is used to find the angle between member CH and the horizontal axis to be 45°. Finally, applying the moment equilibrium condition at point E yields a force of -1.41 kN for FCH.

Static equilibrium equation; torque balance formula; ΣFx=0 analysis.

In this case, the negative result signifies a compressive force acting on member CH.

Tags

Method Of SectionsRoof TrussVertical MembersDiagonal MembersHorizontal MembersForcesMoment EquilibriumReaction ForceFree body DiagramTensile ForceCompressive ForceTrigonometryAngle Resolution

Dal capitolo 6:

article

Now Playing

6.8 : Method of Sections: Problem Solving I

Structural Analysis

482 Visualizzazioni

article

6.1 : Introduzione alle strutture

Structural Analysis

958 Visualizzazioni

article

6.2 : Tralicci semplici

Structural Analysis

1.6K Visualizzazioni

article

6.3 : Metodo delle giunzioni

Structural Analysis

705 Visualizzazioni

article

6.4 : Metodo delle articolazioni: risoluzione dei problemi I

Structural Analysis

1.0K Visualizzazioni

article

6.5 : Metodo delle articolazioni: risoluzione dei problemi II

Structural Analysis

486 Visualizzazioni

article

6.6 : Membro a forza zero

Structural Analysis

1.3K Visualizzazioni

article

6.7 : Metodo delle sezioni

Structural Analysis

559 Visualizzazioni

article

6.9 : Metodo delle sezioni: Risoluzione dei problemi II

Structural Analysis

893 Visualizzazioni

article

6.10 : Tralicci spaziali

Structural Analysis

734 Visualizzazioni

article

6.11 : Tralicci spaziali: risoluzione dei problemi

Structural Analysis

539 Visualizzazioni

article

6.12 : Fotogrammi

Structural Analysis

495 Visualizzazioni

article

6.13 : Frames: Risoluzione dei problemi I

Structural Analysis

384 Visualizzazioni

article

6.14 : Frames: Risoluzione dei problemi II

Structural Analysis

177 Visualizzazioni

article

6.15 : Macchine

Structural Analysis

233 Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati