サインイン

Oregon Health & Sciences University

4 ARTICLES PUBLISHED IN JoVE

image

Medicine

Normothermic Cardiac Arrest and Cardiopulmonary Resuscitation: A Mouse Model of Ischemia-Reperfusion Injury
Michael P. Hutchens 1, Richard J. Traystman 2, Tetsuhiro Fujiyoshi 1, Shin Nakayama 1, Paco S. Herson 1
1Department of Anesthesiology and Perioperative Medicine, Oregon Health & Sciences University, 2Department of Pharmacology, University of Colorado Denver

A powerful model for perioperative and critical care related acute kidney injury is presented. Using whole body hypoperfusion induced by cardiac arrest it is possible to nearly replicate the histologic and functional changes of clinical AKI.

image

Neuroscience

Sex Stratified Neuronal Cultures to Study Ischemic Cell Death Pathways
Stacy L. Fairbanks *1, Rebekah Vest *1, Saurabh Verma 2, Richard J. Traystman 1,3, Paco S. Herson 1,3
1Department of Anesthesiology, University of Colorado School of Medicine, 2Oregon National Primate Research Center, Oregon Health & Science University, 3Department of Pharmacology, University of Colorado School of Medicine

Primary disassociated embryonic hippocampal neuronal cultures are useful for investigating the signaling mechanisms involved in neuron death. Sexing the embryos before the isolation and dissociation of the hippocampus allows the preparation of separate male and female cultures, which enables the researcher to identify and investigate sex-specific cell signaling.

image

Neuroscience

Mass Histology to Quantify Neurodegeneration in Drosophila
Elizabeth R. Sunderhaus 1, Doris Kretzschmar 1
1Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University

Drosophila is widely used as a model system to study neurodegeneration. This protocol describes a method by which degeneration, as determined by vacuole formation in the brain, can be quantified. It also minimizes effects due to the experimental procedure by processing and sectioning control and experimental flies as one sample.

image

Biology

Micropuncture of Bowman's Space in Mice Facilitated by 2 Photon Microscopy
Katsuyuki Matsushita 1, Kirsti Golgotiu 1, Daniel J. Orton 2, Richard D. Smith 2, Karin D. Rodland 2, Paul D. Piehowski 2, Michael P. Hutchens 1,3
1Anesthesiology & Perioperative Medicine, Oregon Health & Science University, 2Environmental and Biological Services Division, Pacific Northwest National Laboratory, 3Operative Care Division, Portland Veterans Affairs Medical Center

We present use of 2-photon microscopy to place a micropipette within Bowman's urinary space in mice, combining 2 foundational techniques of renal physiology. Use of 2-photon microscopy overcomes critical limitations of conventional microscopy for micropuncture renal physiology studies.

当社はcookieを使用しています。

「続行」をクリックすることで、当社のcookieへの同意となります。