サインイン

In skeletal muscles, acetylcholine is released by nerve terminals at the motor endplate—the point of synaptic communication between motor neurons and muscle fibers. The binding of acetylcholine to its receptors on the sarcolemma allows entry of sodium ions into the cell and triggers an action potential in the muscle cell. Thus, electrical signals from the brain are transmitted to the muscle. Subsequently, the enzyme acetylcholinesterase breaks down acetylcholine to prevent excessive muscle stimulation.

Individuals with the disorder myasthenia gravis develop antibodies against the acetylcholine receptor. This prevents the transmission of electrical signals between the motor neuron and muscle fiber and impairs skeletal muscle contraction. Myasthenia gravis is treated using drugs that inhibit acetylcholinesterase (allowing more opportunities for the neurotransmitter to stimulate the remaining receptors) or suppress the immune system (preventing the formation of antibodies).

Smooth Muscle Contraction

Unlike skeletal muscles, smooth muscles present in the walls of internal organs are innervated by the autonomic nervous system and undergo involuntary contractions. Contraction is mediated by the interaction between two filament proteins—actin and myosin. The interaction of actin and myosin is closely linked to intracellular calcium concentration. In response to neurotransmitter or hormone signals or stretching of the muscle, extracellular calcium enters the cell through calcium channels on the sarcolemma or is released intracellularly from the sarcoplasmic reticulum. Inside the cell, calcium binds to the regulatory protein calmodulin. The calcium-calmodulin complex then activates the enzyme myosin light chain kinase, which phosphorylates myosin and allows it to interact with actin, causing the muscle to contract.

タグ
Muscle ContractionAcetylcholineMotor EndplateSarcolemmaAction PotentialAcetylcholinesteraseMyasthenia GravisSmooth MuscleActinMyosinCalciumCalmodulinMyosin Light Chain Kinase

章から 14:

article

Now Playing

14.15 : Muscle Contraction

チャネルと膜の電気的特性

5.9K 閲覧数

article

14.1 : アクアポリン

チャネルと膜の電気的特性

4.6K 閲覧数

article

14.2 : ノンゲートイオンチャネル

チャネルと膜の電気的特性

6.5K 閲覧数

article

14.3 : リガンド依存性イオンチャネル

チャネルと膜の電気的特性

12.0K 閲覧数

article

14.4 : 電位依存性イオンチャネル

チャネルと膜の電気的特性

7.7K 閲覧数

article

14.5 : メカニカルゲートイオンチャネル

チャネルと膜の電気的特性

6.0K 閲覧数

article

14.6 : ニューロンの構造

チャネルと膜の電気的特性

12.1K 閲覧数

article

14.7 : 安静時膜電位

チャネルと膜の電気的特性

16.6K 閲覧数

article

14.8 : 静止電位減衰

チャネルと膜の電気的特性

4.5K 閲覧数

article

14.9 : アクションポテンシャル

チャネルと膜の電気的特性

7.2K 閲覧数

article

14.10 : チャネルロドプシン

チャネルと膜の電気的特性

2.5K 閲覧数

article

14.11 : パッチクランプ

チャネルと膜の電気的特性

5.2K 閲覧数

article

14.12 : 電気シナプス

チャネルと膜の電気的特性

7.8K 閲覧数

article

14.13 : 化学シナプス

チャネルと膜の電気的特性

8.3K 閲覧数

article

14.14 : 神経伝達物質の興奮性および抑制性効果

チャネルと膜の電気的特性

9.2K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved