로그인

In skeletal muscles, acetylcholine is released by nerve terminals at the motor endplate—the point of synaptic communication between motor neurons and muscle fibers. The binding of acetylcholine to its receptors on the sarcolemma allows entry of sodium ions into the cell and triggers an action potential in the muscle cell. Thus, electrical signals from the brain are transmitted to the muscle. Subsequently, the enzyme acetylcholinesterase breaks down acetylcholine to prevent excessive muscle stimulation.

Individuals with the disorder myasthenia gravis develop antibodies against the acetylcholine receptor. This prevents the transmission of electrical signals between the motor neuron and muscle fiber and impairs skeletal muscle contraction. Myasthenia gravis is treated using drugs that inhibit acetylcholinesterase (allowing more opportunities for the neurotransmitter to stimulate the remaining receptors) or suppress the immune system (preventing the formation of antibodies).

Smooth Muscle Contraction

Unlike skeletal muscles, smooth muscles present in the walls of internal organs are innervated by the autonomic nervous system and undergo involuntary contractions. Contraction is mediated by the interaction between two filament proteins—actin and myosin. The interaction of actin and myosin is closely linked to intracellular calcium concentration. In response to neurotransmitter or hormone signals or stretching of the muscle, extracellular calcium enters the cell through calcium channels on the sarcolemma or is released intracellularly from the sarcoplasmic reticulum. Inside the cell, calcium binds to the regulatory protein calmodulin. The calcium-calmodulin complex then activates the enzyme myosin light chain kinase, which phosphorylates myosin and allows it to interact with actin, causing the muscle to contract.

Tags
Muscle ContractionAcetylcholineMotor EndplateSarcolemmaAction PotentialAcetylcholinesteraseMyasthenia GravisSmooth MuscleActinMyosinCalciumCalmodulinMyosin Light Chain Kinase

장에서 14:

article

Now Playing

14.15 : Muscle Contraction

Channels and the Electrical Properties of Membranes

5.9K Views

article

14.1 : 아쿠아포린

Channels and the Electrical Properties of Membranes

4.6K Views

article

14.2 : Non-gated 이온 채널

Channels and the Electrical Properties of Membranes

6.5K Views

article

14.3 : 리간드 게이트 이온 채널

Channels and the Electrical Properties of Membranes

12.0K Views

article

14.4 : 전압 의존성 이온 채널

Channels and the Electrical Properties of Membranes

7.7K Views

article

14.5 : 기계적으로 게이트된 이온 채널

Channels and the Electrical Properties of Membranes

6.0K Views

article

14.6 : 뉴런 구조

Channels and the Electrical Properties of Membranes

12.1K Views

article

14.7 : 휴지막 전위

Channels and the Electrical Properties of Membranes

16.6K Views

article

14.8 : 휴지 전위 감퇴

Channels and the Electrical Properties of Membranes

4.5K Views

article

14.9 : 활동전위

Channels and the Electrical Properties of Membranes

7.2K Views

article

14.10 : 채널 로돕신

Channels and the Electrical Properties of Membranes

2.5K Views

article

14.11 : 패치 클램프

Channels and the Electrical Properties of Membranes

5.2K Views

article

14.12 : 전기 시냅스

Channels and the Electrical Properties of Membranes

7.8K Views

article

14.13 : 화학적 시냅스

Channels and the Electrical Properties of Membranes

8.3K Views

article

14.14 : 신경전달물질의 흥분성 및 억제 효과(Excitatory and Inhibitory Effects of Neurotransmitters)

Channels and the Electrical Properties of Membranes

9.2K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유