Войдите в систему

In skeletal muscles, acetylcholine is released by nerve terminals at the motor endplate—the point of synaptic communication between motor neurons and muscle fibers. The binding of acetylcholine to its receptors on the sarcolemma allows entry of sodium ions into the cell and triggers an action potential in the muscle cell. Thus, electrical signals from the brain are transmitted to the muscle. Subsequently, the enzyme acetylcholinesterase breaks down acetylcholine to prevent excessive muscle stimulation.

Individuals with the disorder myasthenia gravis develop antibodies against the acetylcholine receptor. This prevents the transmission of electrical signals between the motor neuron and muscle fiber and impairs skeletal muscle contraction. Myasthenia gravis is treated using drugs that inhibit acetylcholinesterase (allowing more opportunities for the neurotransmitter to stimulate the remaining receptors) or suppress the immune system (preventing the formation of antibodies).

Smooth Muscle Contraction

Unlike skeletal muscles, smooth muscles present in the walls of internal organs are innervated by the autonomic nervous system and undergo involuntary contractions. Contraction is mediated by the interaction between two filament proteins—actin and myosin. The interaction of actin and myosin is closely linked to intracellular calcium concentration. In response to neurotransmitter or hormone signals or stretching of the muscle, extracellular calcium enters the cell through calcium channels on the sarcolemma or is released intracellularly from the sarcoplasmic reticulum. Inside the cell, calcium binds to the regulatory protein calmodulin. The calcium-calmodulin complex then activates the enzyme myosin light chain kinase, which phosphorylates myosin and allows it to interact with actin, causing the muscle to contract.

Теги
Muscle ContractionAcetylcholineMotor EndplateSarcolemmaAction PotentialAcetylcholinesteraseMyasthenia GravisSmooth MuscleActinMyosinCalciumCalmodulinMyosin Light Chain Kinase

Из главы 14:

article

Now Playing

14.15 : Muscle Contraction

Channels and the Electrical Properties of Membranes

5.9K Просмотры

article

14.1 : Аквапорины

Channels and the Electrical Properties of Membranes

4.6K Просмотры

article

14.2 : Незатворные ионные каналы

Channels and the Electrical Properties of Membranes

6.5K Просмотры

article

14.3 : Лиганд-зависимые ионные каналы

Channels and the Electrical Properties of Membranes

12.0K Просмотры

article

14.4 : Потенциал-зависимые ионные каналы

Channels and the Electrical Properties of Membranes

7.7K Просмотры

article

14.5 : Ионные каналы с механическим стробированием

Channels and the Electrical Properties of Membranes

6.0K Просмотры

article

14.6 : Структура нейронов

Channels and the Electrical Properties of Membranes

12.1K Просмотры

article

14.7 : Потенциал мембраны покоя

Channels and the Electrical Properties of Membranes

16.6K Просмотры

article

14.8 : Затухание потенциала покоя

Channels and the Electrical Properties of Membranes

4.5K Просмотры

article

14.9 : Потенциал действий

Channels and the Electrical Properties of Membranes

7.2K Просмотры

article

14.10 : Канальные родопсины

Channels and the Electrical Properties of Membranes

2.5K Просмотры

article

14.11 : Патч-зажим

Channels and the Electrical Properties of Membranes

5.2K Просмотры

article

14.12 : Электрические синапсы

Channels and the Electrical Properties of Membranes

7.8K Просмотры

article

14.13 : Химические синапсы

Channels and the Electrical Properties of Membranes

8.3K Просмотры

article

14.14 : Возбуждающие и тормозящие эффекты нейротрансмиттеров

Channels and the Electrical Properties of Membranes

9.2K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены