Oturum Aç

In skeletal muscles, acetylcholine is released by nerve terminals at the motor endplate—the point of synaptic communication between motor neurons and muscle fibers. The binding of acetylcholine to its receptors on the sarcolemma allows entry of sodium ions into the cell and triggers an action potential in the muscle cell. Thus, electrical signals from the brain are transmitted to the muscle. Subsequently, the enzyme acetylcholinesterase breaks down acetylcholine to prevent excessive muscle stimulation.

Individuals with the disorder myasthenia gravis develop antibodies against the acetylcholine receptor. This prevents the transmission of electrical signals between the motor neuron and muscle fiber and impairs skeletal muscle contraction. Myasthenia gravis is treated using drugs that inhibit acetylcholinesterase (allowing more opportunities for the neurotransmitter to stimulate the remaining receptors) or suppress the immune system (preventing the formation of antibodies).

Smooth Muscle Contraction

Unlike skeletal muscles, smooth muscles present in the walls of internal organs are innervated by the autonomic nervous system and undergo involuntary contractions. Contraction is mediated by the interaction between two filament proteins—actin and myosin. The interaction of actin and myosin is closely linked to intracellular calcium concentration. In response to neurotransmitter or hormone signals or stretching of the muscle, extracellular calcium enters the cell through calcium channels on the sarcolemma or is released intracellularly from the sarcoplasmic reticulum. Inside the cell, calcium binds to the regulatory protein calmodulin. The calcium-calmodulin complex then activates the enzyme myosin light chain kinase, which phosphorylates myosin and allows it to interact with actin, causing the muscle to contract.

Etiketler
Muscle ContractionAcetylcholineMotor EndplateSarcolemmaAction PotentialAcetylcholinesteraseMyasthenia GravisSmooth MuscleActinMyosinCalciumCalmodulinMyosin Light Chain Kinase

Bölümden 14:

article

Now Playing

14.15 : Muscle Contraction

Hücre Zarının Kanalları ve Elektriksel Özellikleri

5.9K Görüntüleme Sayısı

article

14.1 : Akuapirler

Hücre Zarının Kanalları ve Elektriksel Özellikleri

4.6K Görüntüleme Sayısı

article

14.2 : Geçitsiz İyon Kanalları

Hücre Zarının Kanalları ve Elektriksel Özellikleri

6.5K Görüntüleme Sayısı

article

14.3 : Ligand Kapılı İyon Kanalları

Hücre Zarının Kanalları ve Elektriksel Özellikleri

12.0K Görüntüleme Sayısı

article

14.4 : Gerilim Kapılı İyon Kanalları

Hücre Zarının Kanalları ve Elektriksel Özellikleri

7.7K Görüntüleme Sayısı

article

14.5 : Mekanik Kapılı İyon Kanalları

Hücre Zarının Kanalları ve Elektriksel Özellikleri

6.0K Görüntüleme Sayısı

article

14.6 : Nöron Yapısı

Hücre Zarının Kanalları ve Elektriksel Özellikleri

12.1K Görüntüleme Sayısı

article

14.7 : Dinlenme Membran Potansiyeli

Hücre Zarının Kanalları ve Elektriksel Özellikleri

16.6K Görüntüleme Sayısı

article

14.8 : Dinlenme Potansiyeli Çürümesi

Hücre Zarının Kanalları ve Elektriksel Özellikleri

4.5K Görüntüleme Sayısı

article

14.9 : Aksiyon Potansiyeli

Hücre Zarının Kanalları ve Elektriksel Özellikleri

7.2K Görüntüleme Sayısı

article

14.10 : Kanal Rodopsinleri

Hücre Zarının Kanalları ve Elektriksel Özellikleri

2.5K Görüntüleme Sayısı

article

14.11 : Yama Kelepçesi

Hücre Zarının Kanalları ve Elektriksel Özellikleri

5.2K Görüntüleme Sayısı

article

14.12 : Elektriksel Sinapslar

Hücre Zarının Kanalları ve Elektriksel Özellikleri

7.8K Görüntüleme Sayısı

article

14.13 : Kimyasal Sinapslar

Hücre Zarının Kanalları ve Elektriksel Özellikleri

8.3K Görüntüleme Sayısı

article

14.14 : Nörotransmiterlerin Uyarıcı ve İnhibitör Etkileri

Hücre Zarının Kanalları ve Elektriksel Özellikleri

9.2K Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır