サインイン

Consider two parallel straight wires carrying a current of 10 A and 20 A in the same direction and separated by a distance of 20 cm. Calculate the magnetic field at a point "P2", midway between the wires. Also, evaluate the magnetic field when the direction of the current is reversed in the second wire.

Figure1

The current flowing in the wires and the separation distance between the wires are the known quantities. The magnetic field at a point 10 cm from each wire must be evaluated.

The magnetic field lines form counterclockwise concentric circles around the wires. The expression for the magnetic field due to wire 1 and wire 2 is given by,

Equation1

Equation2

The magnetic fields due to both the current-carrying wires point in opposite directions at the midpoint between both wires. According to the principle of magnetic field superposition, the net magnetic field due to multiple conductors is the vector sum of the field due to the individual conductors. Thus, the net magnetic field is the difference between the magnetic fields for both wires. When the expression for the magnetic field for the individual wires is substituted, the net magnetic field expression reduces to,

Equation3

After substituting the current and distance values, the net magnetic field is calculated as −2 x 105 T when the current flows in the same direction in both wires.

When the current direction is reversed in the second wire, the magnetic fields due to both wires point in the same direction at the midpoint. Therefore, applying the principle of magnetic field superposition, the net magnetic field at the midpoint is expressed as,

Equation4

After substituting the current and distance values, the net magnetic field is calculated as 6 x 10−5 T when the current flows in opposite directions in both wires.

タグ

Magnetic FieldParallel WiresCurrentMagnetic Field SuperpositionMagnetic Field LinesVector SumCurrent DirectionMidpointCounterclockwise CirclesNet Magnetic FieldWire Separation10 A20 A20 Cm

章から 29:

article

Now Playing

29.5 : Magnetic Field Due to Two Straight Wires

磁場の発生源

2.2K 閲覧数

article

29.1 : 移動電荷による磁場

磁場の発生源

8.0K 閲覧数

article

29.2 : ビオ・サバール法

磁場の発生源

5.5K 閲覧数

article

29.3 : ビオ・サバールの法則:問題解決

磁場の発生源

2.2K 閲覧数

article

29.4 : 細い直線ワイヤーによる磁場

磁場の発生源

4.5K 閲覧数

article

29.6 : 2つの並列電流間の磁力

磁場の発生源

3.3K 閲覧数

article

29.7 : 電流ループの磁場

磁場の発生源

4.1K 閲覧数

article

29.8 : 磁場の発散とカール

磁場の発生源

2.6K 閲覧数

article

29.9 : アンペアの法則

磁場の発生源

3.5K 閲覧数

article

29.10 : アンペアの法則:問題解決

磁場の発生源

3.4K 閲覧数

article

29.11 : ソレノイド

磁場の発生源

2.4K 閲覧数

article

29.12 : ソレノイドの磁場

磁場の発生源

3.5K 閲覧数

article

29.13 : トロイド

磁場の発生源

2.8K 閲覧数

article

29.14 : 磁気ベクトルポテンシャル

磁場の発生源

457 閲覧数

article

29.15 : 磁化された物体による電位

磁場の発生源

231 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved