Consider two parallel straight wires carrying a current of 10 A and 20 A in the same direction and separated by a distance of 20 cm. Calculate the magnetic field at a point "P2", midway between the wires. Also, evaluate the magnetic field when the direction of the current is reversed in the second wire.

Figure1

The current flowing in the wires and the separation distance between the wires are the known quantities. The magnetic field at a point 10 cm from each wire must be evaluated.

The magnetic field lines form counterclockwise concentric circles around the wires. The expression for the magnetic field due to wire 1 and wire 2 is given by,

Equation1

Equation2

The magnetic fields due to both the current-carrying wires point in opposite directions at the midpoint between both wires. According to the principle of magnetic field superposition, the net magnetic field due to multiple conductors is the vector sum of the field due to the individual conductors. Thus, the net magnetic field is the difference between the magnetic fields for both wires. When the expression for the magnetic field for the individual wires is substituted, the net magnetic field expression reduces to,

Equation3

After substituting the current and distance values, the net magnetic field is calculated as −2 x 105 T when the current flows in the same direction in both wires.

When the current direction is reversed in the second wire, the magnetic fields due to both wires point in the same direction at the midpoint. Therefore, applying the principle of magnetic field superposition, the net magnetic field at the midpoint is expressed as,

Equation4

After substituting the current and distance values, the net magnetic field is calculated as 6 x 10−5 T when the current flows in opposite directions in both wires.

Tags
Magnetic FieldParallel WiresCurrentMagnetic Field SuperpositionMagnetic Field LinesVector SumCurrent DirectionMidpointCounterclockwise CirclesNet Magnetic FieldWire Separation10 A20 A20 Cm

Dal capitolo 29:

article

Now Playing

29.5 : Magnetic Field Due to Two Straight Wires

Sources of Magnetic Fields

2.0K Visualizzazioni

article

29.1 : Campo magnetico dovuto a cariche in movimento

Sources of Magnetic Fields

7.7K Visualizzazioni

article

29.2 : Legge di Biot-Savart

Sources of Magnetic Fields

5.2K Visualizzazioni

article

29.3 : Legge di Biot-Savart: risoluzione dei problemi

Sources of Magnetic Fields

2.0K Visualizzazioni

article

29.4 : Campo magnetico dovuto a un sottile filo dritto

Sources of Magnetic Fields

4.3K Visualizzazioni

article

29.6 : Forza magnetica tra due correnti parallele

Sources of Magnetic Fields

3.1K Visualizzazioni

article

29.7 : Campo magnetico di un circuito di corrente

Sources of Magnetic Fields

3.9K Visualizzazioni

article

29.8 : Divergenza e arricciatura del campo magnetico

Sources of Magnetic Fields

2.5K Visualizzazioni

article

29.9 : Legge di Ampere

Sources of Magnetic Fields

3.4K Visualizzazioni

article

29.10 : Legge di Ampere: risoluzione dei problemi

Sources of Magnetic Fields

3.3K Visualizzazioni

article

29.11 : Solenoidi

Sources of Magnetic Fields

2.3K Visualizzazioni

article

29.12 : Campo magnetico di un solenoide

Sources of Magnetic Fields

3.3K Visualizzazioni

article

29.13 : Toroidi

Sources of Magnetic Fields

2.6K Visualizzazioni

article

29.14 : Potenziale vettoriale magnetico

Sources of Magnetic Fields

425 Visualizzazioni

article

29.15 : Potenziale dovuto a un oggetto magnetizzato

Sources of Magnetic Fields

210 Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati