JoVE Logo

S'identifier

29.5 : Magnetic Field Due to Two Straight Wires

Consider two parallel straight wires carrying a current of 10 A and 20 A in the same direction and separated by a distance of 20 cm. Calculate the magnetic field at a point "P2", midway between the wires. Also, evaluate the magnetic field when the direction of the current is reversed in the second wire.

Parallel wires force diagram with point P2 and distances labeled as r.

The current flowing in the wires and the separation distance between the wires are the known quantities. The magnetic field at a point 10 cm from each wire must be evaluated.

The magnetic field lines form counterclockwise concentric circles around the wires. The expression for the magnetic field due to wire 1 and wire 2 is given by,

Static equilibrium equations ΣFx=0 ΣFy=0; torque balance diagrams; structural analysis.

Electrolysis diagram with HCl solution, electrodes, and ionic reaction symbols for education.

The magnetic fields due to both the current-carrying wires point in opposite directions at the midpoint between both wires. According to the principle of magnetic field superposition, the net magnetic field due to multiple conductors is the vector sum of the field due to the individual conductors. Thus, the net magnetic field is the difference between the magnetic fields for both wires. When the expression for the magnetic field for the individual wires is substituted, the net magnetic field expression reduces to,

Static equilibrium diagram with forces ΣFx=0, MA=0; depicts beam balance analysis.

After substituting the current and distance values, the net magnetic field is calculated as −2 x 105 T when the current flows in the same direction in both wires.

When the current direction is reversed in the second wire, the magnetic fields due to both wires point in the same direction at the midpoint. Therefore, applying the principle of magnetic field superposition, the net magnetic field at the midpoint is expressed as,

Static equilibrium diagram, ΣFx=0, ΣFy=0, force vectors, sum of forces in balance, mechanics study.

After substituting the current and distance values, the net magnetic field is calculated as 6 x 10−5 T when the current flows in opposite directions in both wires.

Tags

Magnetic FieldParallel WiresCurrentMagnetic Field SuperpositionMagnetic Field LinesVector SumCurrent DirectionMidpointCounterclockwise CirclesNet Magnetic FieldWire Separation10 A20 A20 Cm

Du chapitre 29:

article

Now Playing

29.5 : Magnetic Field Due to Two Straight Wires

Sources of Magnetic Fields

2.3K Vues

article

29.1 : Champ magnétique dû à des charges mobiles

Sources of Magnetic Fields

8.3K Vues

article

29.2 : Loi Biot-Savart

Sources of Magnetic Fields

5.8K Vues

article

29.3 : Loi Biot-Savart : résolution de problèmes

Sources of Magnetic Fields

2.5K Vues

article

29.4 : Champ magnétique dû à un fil droit mince

Sources of Magnetic Fields

4.7K Vues

article

29.6 : Force magnétique entre deux courants parallèles

Sources of Magnetic Fields

3.5K Vues

article

29.7 : Champ magnétique d’une boucle de courant

Sources of Magnetic Fields

4.3K Vues

article

29.8 : Divergence et courbure du champ magnétique

Sources of Magnetic Fields

2.8K Vues

article

29.9 : Loi d’Ampère

Sources of Magnetic Fields

3.7K Vues

article

29.10 : Loi d’Ampère : résolution de problèmes

Sources of Magnetic Fields

3.5K Vues

article

29.11 : Solénoïdes

Sources of Magnetic Fields

2.4K Vues

article

29.12 : Champ magnétique d’un solénoïde

Sources of Magnetic Fields

3.8K Vues

article

29.13 : Tores

Sources of Magnetic Fields

2.9K Vues

article

29.14 : Potentiel vectoriel magnétique

Sources of Magnetic Fields

543 Vues

article

29.15 : Potentiel dû à un objet magnétisé

Sources of Magnetic Fields

258 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.