JoVE Logo

Entrar

29.5 : Campo Magnético Devido a Dois Fios Retos

Consider two parallel straight wires carrying a current of 10 A and 20 A in the same direction and separated by a distance of 20 cm. Calculate the magnetic field at a point "P2", midway between the wires. Also, evaluate the magnetic field when the direction of the current is reversed in the second wire.

Parallel wires force diagram with point P2 and distances labeled as r.

The current flowing in the wires and the separation distance between the wires are the known quantities. The magnetic field at a point 10 cm from each wire must be evaluated.

The magnetic field lines form counterclockwise concentric circles around the wires. The expression for the magnetic field due to wire 1 and wire 2 is given by,

Static equilibrium equations ΣFx=0 ΣFy=0; torque balance diagrams; structural analysis.

Electrolysis diagram with HCl solution, electrodes, and ionic reaction symbols for education.

The magnetic fields due to both the current-carrying wires point in opposite directions at the midpoint between both wires. According to the principle of magnetic field superposition, the net magnetic field due to multiple conductors is the vector sum of the field due to the individual conductors. Thus, the net magnetic field is the difference between the magnetic fields for both wires. When the expression for the magnetic field for the individual wires is substituted, the net magnetic field expression reduces to,

Static equilibrium diagram with forces ΣFx=0, MA=0; depicts beam balance analysis.

After substituting the current and distance values, the net magnetic field is calculated as −2 x 105 T when the current flows in the same direction in both wires.

When the current direction is reversed in the second wire, the magnetic fields due to both wires point in the same direction at the midpoint. Therefore, applying the principle of magnetic field superposition, the net magnetic field at the midpoint is expressed as,

Static equilibrium diagram, ΣFx=0, ΣFy=0, force vectors, sum of forces in balance, mechanics study.

After substituting the current and distance values, the net magnetic field is calculated as 6 x 10−5 T when the current flows in opposite directions in both wires.

Tags

Magnetic FieldParallel WiresCurrentMagnetic Field SuperpositionMagnetic Field LinesVector SumCurrent DirectionMidpointCounterclockwise CirclesNet Magnetic FieldWire Separation10 A20 A20 Cm

Do Capítulo 29:

article

Now Playing

29.5 : Campo Magnético Devido a Dois Fios Retos

Fontes de Campos Magnéticos

2.3K Visualizações

article

29.1 : Campo Magnético Gerado por Cargas em Movimento

Fontes de Campos Magnéticos

8.3K Visualizações

article

29.2 : Lei de Biot-Savart

Fontes de Campos Magnéticos

5.8K Visualizações

article

29.3 : Lei de Biot-Savart: Resolução de Problemas

Fontes de Campos Magnéticos

2.5K Visualizações

article

29.4 : Campo Magnético Gerado por um Fio Retilíneo Fino

Fontes de Campos Magnéticos

4.7K Visualizações

article

29.6 : Força Magnética Entre Duas Correntes Paralelas

Fontes de Campos Magnéticos

3.5K Visualizações

article

29.7 : Campo Magnético em uma Espira de Corrente

Fontes de Campos Magnéticos

4.3K Visualizações

article

29.8 : Divergência e Rotacional do Campo Magnético

Fontes de Campos Magnéticos

2.8K Visualizações

article

29.9 : Lei de Ampère

Fontes de Campos Magnéticos

3.7K Visualizações

article

29.10 : Lei de Ampère: Resolução de Problemas

Fontes de Campos Magnéticos

3.5K Visualizações

article

29.11 : Solenóides

Fontes de Campos Magnéticos

2.4K Visualizações

article

29.12 : Campo Magnético de um Solenóide

Fontes de Campos Magnéticos

3.8K Visualizações

article

29.13 : Toróides

Fontes de Campos Magnéticos

2.9K Visualizações

article

29.14 : Potencial Vetorial Magnético

Fontes de Campos Magnéticos

543 Visualizações

article

29.15 : Potencial Devido a um Objeto Magnetizado

Fontes de Campos Magnéticos

258 Visualizações

See More

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados