JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

標的タンパク質分解は、細胞機能の主要な調節機構を表す。その後、26Sプロテアソームのために、分子「タグ」を提供する標的タンパク質にユビキチン鎖が付加し保存され、ユビキチン-プロテアソーム経路を介して行われます。ここでは、タンパク質のプロテアソーム分解のための、シンプルで信頼性の高い無細胞アッセイを記述します。

要約

タンパク質分解のためにユビキチン - プロテアソーム経路は、事実上すべての真核生物における細胞機能の広範囲の調節のための最も重要なメカニズムの一つとして浮上している。具体的には、植物において、ubiquitin/26Sプロテアソームシステム(UPS)は、タンパク質分解を調節し、免疫応答、発生およびプログラム細胞死のプロセスを含む広範囲の開発に大きく貢献する。また、増加する証拠は、 アグロバクテリウムなどの多数の植物病原体は、植物-病原体相互作用におけるUPSの重要性を強調し、効率的な感染のホストにUPSを利用することを示唆している。

UPSの基質特異性は、E1とE2と協調して作用するE3ユビキチンリガーゼによって達成されるそれらにユビキチン分子の鎖を結合することによって分解宛ての特定のタンパク質分子を認識し、マークするリガーゼ。 E3リガーゼの一つのクラスは、SCF(Skp1と/ Cです具体的にはUPS基質を認識し、F-boxタンパク質成分を介してユビキチン化のためにそれらを標的ウルリン/ F-ボックスタンパク質)錯体。関心対象の生物学的プロセスにおけるUPSの潜在的役割を調査するために、UPS媒介性タンパク質分解のためのシンプルで信頼性の高いアッセイを考案することが重要である。ここでは、植物、無細胞系を用いてそのようなアッセイを記載している。このアッセイは、F-boxタンパク質 - 基質相互作用に特に焦点を有する多様な細胞プロセスにおける調節タンパク質分解の役割の研究に適合させることができる。

概要

ubiquitin/26Sプロテアソーム経路は、転写調節、細胞周期の進行およびシグナル伝達、ダウンレギュレーションまたはエンドサイトーシス受容体、とりわけ1-4を処理するなど、多様な生物学的反応を制御するための広範な機構として浮上している。この経路において、標的タンパク質は、第ユビキチン活性化酵素E1にチオールエステル結合を介して結合し、次いで、ユビキチン共役酵素E2のシステインアミノ酸残基に転残基をユビキチンによりタグ付けされ、最後に、E2は、ユビキチンリガーゼE3と相互作用する、タンパク質基質のユビキチン化をもたらす。最終的には、ポリユビキチン化タンパク質は、26Sプロテアソームによって認識され、分解される。このメカニズムでは、E3酵素は、基質を指定し、ubiquitin/26Sプロテアソームシステム(UPS)の重要な調節コンポーネントとして機能します。 E3リガーゼは、RINGドメインリガーゼとして、またはマルチサブSCF(Sの一環として、独立して機能することができ例えば、F-boxドメインリガーゼとしてkp1/Cullin/F-boxタンパク質)複合体。 SCF媒介性プロテアソーム分解経路は、転写、細胞周期、シグナル伝達5-10および他の多くの主要な細胞機能の調節に関与している。

細胞過程の調節に、これらの重要な役割に加えて、UPSは多くの植物 - 病原体相互作用の中心的舞台になります。例えば、証拠が増えアグロバクテリウムツメファシエンスを含むいくつかの植物病原体は感染プロセス11を容易にするためのホストのUPSに依存していることを示唆している。アグロバクテリウムは、その自然のホストを表す植物に腫瘍性増殖を誘発し、それはまた、ヒトの細胞12,13に菌類1,2から、他の真核生物の広い範囲を変換することができます。その感染時に、アグロバクテリウムは、宿主細胞12月13日にDNAエレメント(T-DNA)およびいくつかの病原性(Virの)タンパク質をエクスポートします。これらのタンパク質の一つがVirF、最初に検出されたF-boxタンパク質である原核生物のゲノム14によって符号化される。 SCFユビキチンリガーゼ複合体、VirF、及びその機能宿主ホモログVBF 15の一部として、おそらくVirE2、それに付随する細菌および宿主のタンパク質から侵入する細菌のT-DNAの脱殻を容易にUPS媒介性タンパク質分解を介して 、アグロバクテリウム感染を容易にするとVIP1、それぞれ16,17。興味深いことに、VirFを含む多くのF-ボックスタンパク質は、原因自己ユビキチン化活性の18,19によってまたはF-ボックスタンパク質は、基質20〜23として役立つ可能性があるため、他のE3リガーゼによって媒介される、独自のタンパク質分解に本質的に不安定である。

F-ボックスタンパク質、他のユビキチンリガーゼ、および/またはそれらの基質の生化学的活性を研究する場合には、プロテアソーム分解のためのシンプルで信頼性の高いアッセイを使用することは非常に有用であろう。ここで我々は、細胞中のタンパク質の安定性を分析するためのそのようなプロトコルの1つを記載フリーシステム。このアッセイでは、UPS基材の安定性は、無細胞系において、例えば、F-boxタンパク質としてのプロテアソーム分解経路の必須成分の一つの存在下又は非存在下で分析される。一般に、我々は、植物組織中で試験タンパク質を発現するこれらの組織からの無細胞抽出物を調製し、ウェスタンブロッティングによって、目的のタンパク質(単数または複数)の量を監視する。タンパク質分解のUPS依存性機構は、特定のプロテアソーム阻害剤および/またはSCF成分、キュリンのドミナントネガティブ型の同時発現を使用して含めることによって実証される。我々は、F-boxタンパク質VBF 15によって、シロイヌナズナVIP1 17タンパク質のプロテアソーム分解を用いてこのアッセイを例示する一方で、それは他のプロテアソーム基質の安定性を調べるために使用することができる。

プロトコル

1。タンパク質の発現

  1. 発現系の選択
    システムを選択し、すなわち、ベクターおよび特定のモデル生物/細胞における目的タンパク質の発現のために最適なベクター送達方法。我々のアッセイは、最高の多数の細胞の一過性形質転換することにより達成される簡単に検出可能な量で試験したタンパク質の発現を必要とすることに注意してください。植物では、例えば、これは、最高の発現ベクターおよび送達系としてのアグロバクテリウムバイナリーとしてプラスミドを用いて達成される。
  2. バイナリー発現ベクターの構築
    単独で又はエピトープタグに翻訳融合のいずれかで発現ベクターに関心対象のタンパク質のコード配列(単数または複数)をクローニングする。使用は、選択した発現系および遺伝子クローニングのための標準的な分子生物学的手順に適したベクター。アグロバクテリウム媒介遺伝子送達のために、スタンダを使用しても、バイナリーベクターを採用し、それらを導入このような植物組織のその後の接種EHA105、アグロバクテリウム株にRDプロトコル、。
  3. 植物種の選択
    目的のタンパク質(単数または複数)発現される植物種を選択する。アグロバクテリウム媒介形質転換を受けやすい任意の植物種を用いることができるが、なお、選択された我々の植物種はアグロバクテリウム容易に影響を非常に受けやすく、成長させたベンサミアナタバコ 、であり、容易に接種する大きな葉を有する。
  4. 植物成長
    長い一日の環境制御された条件(例えば、成長室)130(すなわち、16時間の下の鍋(19センチ×20センチ×20cm)に中のプロミックスBXと鍋に4から6週間の1の植物を育てる-150μEM-2、S-1 23℃での光と20°Cで8時間暗い)と40〜65パーセントの相対湿度。
    時折、製造業者の指示に従って市販の製品と1.5.2肥やす。植物が成長されると、選択アグロバクテリウム接種のために(これらの長さの測定には葉柄が含まれていません)×70ミリメートル以上50ミリメートルの大きさに残します。
  5. アグロバクテリウムを接種
    /適切な抗生物質(例えば、100mgを補充したYEP培地中で28°C(1%ペプトン、1%酵母エキス、0.5%NaCl)中で一晩、ステップ1.3から試験したタンパク質を発現するバイナリー構築物を保有するアグロバクテリウム株を成長させるLのストレプトマイシンおよびpPZP系- RSC2ベースのベクター24〜25)が10 mg / Lのリファンピシン。
    1.6.2遠心浸潤緩衝液中でOD 600まで再懸濁した細胞、= 0.5 [10mMのMgCl 2、10mMのMesの液(pH 5.6)、100μMアセトシリンゴン]、そして室温で2時間インキュベートする。 1 mLの針なしの注射器を使用して、葉の背軸側に文化を浸透させる、植物に接続されている間葉は、その場で接種されることに注意してください。
    1.6.3浸透後、16時間130〜150&の光政権の下で72時間、植物を育てる#181;のE、M-2、S-1収穫前に20℃で23℃/ 8時間の暗の光。
  6. プロテアソーム阻害剤の適用
    テストされたタンパク質(S)は、プロテアソーム経路を介して分解されるという考えをサポートするために、軽減あるいは分解を遮断する必要のある、特定のプロテアソーム阻害剤MG132を使用し、28〜29をラクタシスチン。収穫前に4時間(ステップ2.1を参照)、それぞれの溶媒を用いて、10μMMG132(EMDミリポア)または10μMラクタシスチン(Sigma-Aldrich社)またはモック治療の葉にアグロバクテリウムを接種した葉の面積を浸透、すなわち、0.1%のDMSOまたは蒸留水。

2。無細胞抽出物の調製

  1. 葉の収穫
    葉の接種された領域、通常はCAを収穫。 200〜400新鮮重の物、そして液体窒素中で微粉末にそれらを挽く。代わりに、任意のビーズビーター(例えば、バイオスペック)または歯科混汞(例えば、TPC [詳細設定]を使用して、組織をビーズビート直接分解緩衝液中の技術)(工程2.2を参照のこと)。
  2. タンパク質抽出
    分解緩衝液500μLに接地組織を配置することによって、総タンパク質抽出物を調製[50mMのトリス-HCL(pH7.5)中、100mMのNaCl、10mMのMgCl 2、5mMのDTT、5mMのアデノシン5'-三リン酸、および1×プロテアーゼ阻害剤カクテル(Sigma-Aldrich社)〕。プロテアーゼ阻害剤カクテルは、主に、セリン、システイン、アスパラギン、およびメタロに影響を及ぼし、26Sプロテアーゼと干渉しないことに留意されたい。 5分間12,000×gで2連続的な遠心分離によりエキスを明らかにする。
  3. タンパク質分解反応
    チューブを微量遠心し、時間の期間を増加させるために、室温でそれらをインキュベートし、通常は20μL、抽出物の等容量を転送する。典型的には、サンプル時間ゼロ及び5、10、15、20、および30分の時点。 SDSゲル試料緩衝液中で煮沸することにより反応を停止し、ウェスタンブロッティングによってそれらを分析。
jove_title "> 3。イムノブロッティングによりタンパク質分解の検出

  1. ゲル電気泳動
    3.1.1 SDS-ポリアクリルアミドゲル電気泳動によりタンパク質試料を解決し、標準的なプロトコル30に従ってニトロセルロース膜に分離したタンパク質をエレクトロ。
    3.1.2 Bradford法(Bio-Rad)を用いてタンパク質濃度を決定し、レーンあたり総タンパク質50〜80μgのを読み込む。すべてのサンプルが均等にロードされていることを確認してください。ローディングコントロールの場合、このような50kDa付近の相対的な電気泳動移動度を有する主要なバンドとして移動推定のルビスコ大鎖のような遍在タンパク質種の強度を比較して、彼らは、クマシーブルー染色ゲル上またはポンソーS-または検出することができる蛍光SYPROルビー染色したニトロセルロース膜。
  2. ブロッキング
    室温で1時間、TBST(10mMトリス-HCl、140mMのNaCl、0.05%のTween 20、pH7.4)中の5%スキムミルクで膜をブロックする。
  3. 一次抗体
    メーカーが推奨する濃度でTBST中の1%スキムミルクで一次抗エピトープ抗体を希釈し、穏やかに撹拌しながら4℃で、室温で1時間または一晩ブロックされた膜とインキュベートする。
  4. すすぎ
    膜を一回15分間20mlのTBSTでリンスし、二回穏やかに攪拌しながら室温で5分間リンスされる。
  5. 二次抗体
    製造業者により推奨されるようにTBST中の1%スキムミルクで西洋ワサビペルオキシダーゼ(HRP)とコンジュゲート二次抗体(例えば、抗ウサギIgG)を希釈し、穏やかに攪拌しながら室温で1時間、膜とともにインキュベートする。
  6. 検出
    ステップ3.4で説明したように、再び膜を洗浄します。 TBSTで最後のすすぎの後、最も一般的にはECLキットを用い、HRP化学発光基質を用いて目的のタンパク質を可視化する。

結果

Zaltsman 17から適応図1は 、無細胞系におけるプロテアソーム分解の検出のための代表的な実験を示す。具体的には、NにSCF VBF経路 を介して VBFのF-ボックスタンパク質による植物防御関連タンパク質VIP1の不安定化を実証ベンサミ 。シロイヌナズナVBFおよびHA-タグ化VIP1(HA-VIP1)タンパク質を一過性同時発現させ、発現した葉の抽出物中...

ディスカッション

このアッセイは、植物組織における試験したタンパク質の発現に依存しているため、潜在的なプロテアソーム分解プロセスは、明らかに、生体組織内で既に発生した。我々は、最初の基準点となる時間ゼロサンプルのみで、抽出物中で、しかし、タンパク質の不安定化をアッセイする。したがって、我々は、無細胞アッセイとして定義します。

このアッセイの成功のた?...

開示事項

利害の対立が宣言されていません。

謝辞

この出版につながる仕事はジョージア番号246550の下でマラガ大学と欧州連合(EU)7 番目のフレームワークプログラム(FP7/2007-2013)によって協調融資マリーキュリーCOFUNDプログラム「U-モビリティ」から資金提供を受けています。私たちの研究室での作業はVCにNIH、米国農務省/ NIFA、NSF、バードとBSFからの補助金によってサポートされています

資料

NameCompanyCatalog NumberComments
Protein assay kitBio-Rad500-0001
Proteinase inhibitor cocktail Sigma-AldrichS8820
Mini-Protean systemBio-Rad165-8000
Semi-dry western blotting SD electrotransfer systemBio-Rad170-3940
Affinity Purified Rabbit Anti-HaICL LabRHGT-45A-Z
Goat anti-Rabbit IgG Peroxidase ConjugateThermo Scientific31460
BioTrace, NT nitrocellulose transfer membranePall Corporation27377-000
Immobilon western chemiluminescent HRP substrateEMD MilliporeWBKL S0 050
MG132EMD Millipore474790-1MG
LactacystinSigma-AldrichL6785
Thermo Scientific Pierce Fast Western Blot Kit, ECL SubstratePierce35055

参考文献

  1. Patton, E. E., Willems, A. R., Tyers, M. Combinatorial control in ubiquitin-dependent proteolysis: don’t Skp the F-box hypothesis. Trends Genet. 14, 236-243 (1998).
  2. Deshaies, R. J. SCF and cullin/ring H2-based ubiquitin ligases. Annu. Rev. Cell Biol. 15, 435-467 (1999).
  3. Callis, J., Vierstra, R. D. Protein degradation in signaling. Curr. Opin. Plant Biol. 3, 381-386 (2000).
  4. Hellmann, H., Estelle, M. Plant development: regulation by protein degradation. Science. 297, 793-797 (2002).
  5. Hershko, A., Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425-479 (1998).
  6. Dharmasiri, S., Estelle, M. The role of regulated protein degradation in auxin response. Plant Mol. Biol. 49, 401-409 (2002).
  7. Devoto, A., Muskett, P. R., Shirasu, K. Role of ubiquitination in the regulation of plant defence against pathogens. Curr. Opin. Plant Biol. 6, 307-311 (2003).
  8. Itoh, H., Matsuoka, M., Steber, C. M. A role for the ubiquitin-26S-proteasome pathway in gibberellin signaling. Trends Plant Sci. 8, 492-497 (2003).
  9. Wang, T. The 26S proteasome system in the signaling pathways of TGF-beta superfamily. Front. Biosci. 8, 1109-1127 (2003).
  10. Pagano, M. Control of DNA synthesis and mitosis by the Skp2- p27-Cdk1/2 axis. Mol. Cell. 14, 414-416 (2004).
  11. Magori, S., Citovsky, V. Hijacking of the host SCF ubiquitin ligase machinery by plant pathogens. Front. Plant Sci. 2, 87 (2011).
  12. Gelvin, S. B. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol. Mol Biol. Rev. 67, 16-37 (2003).
  13. Lacroix, B., Citovsky, V. The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int. J. Dev. Biol. 57, (2013).
  14. Schrammeijer, B., et al. Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr. Biol. 11, 258-262 (2001).
  15. Zaltsman, A., Krichevsky, A., Loyter, A., Citovsky, V. Agrobacterium induces expression of a plant host F-box protein required for tumorigenicity. Cell Host Microbe. 7, 197-209 (2010).
  16. Tzfira, T., Vaidya, M., Citovsky, V. Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature. 431, 87-92 (2004).
  17. Zaltsman, A., Lacroix, B., Gafni, Y., Citovsky, V. Disassembly of synthetic Agrobacterium T-DNA-protein complexes via the host SCFVBF ubiquitin-ligase complex pathway. Proc. Natl. Acad. Sci. U.S.A. 110, 169-174 (2013).
  18. Zhou, P., Howley, P. M. Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin-protein ligases. Mol. Cell. 2, 571-580 (1998).
  19. Galan, J. M., Peter, M. Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. Proc. Natl. Acad. Sci. U.S.A. 96, 9124-9129 (1999).
  20. Ayad, N. G., Rankin, S., Murakami, M., Jebanathirajah, J., Gygi, S., Kirschner, M. W. Tome-1, a trigger of mitotic entry, is degraded during G1 via the APC. Cell. 113, 101-113 (2003).
  21. Guardavaccaro, D., et al. Control of meiotic and mitotic progression by the F box protein b-Trcp1 in vivo. Dev. Cell. 4, 799-812 (2003).
  22. Magori, S., Citovsky, V. Agrobacterium counteracts host-induced degradation of its F-box protein effector. Sci. Signal. 4, (2011).
  23. Margottin-Goguet, F., Hsu, J. Y., Loktev, A., Hsieh, H. M., Reimann, J. D., Jackson, P. K. Prophase destruction of Emi1 by the SCFbTrCP/Slimb ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev. Cell. 4, 813-826 (2003).
  24. Tzfira, T., et al. pSAT vectors: a modular series of plasmids for fluorescent protein tagging and expression of multiple genes in plants. Plant Mol. Biol. 57, 503-516 (2005).
  25. Goderis, I. J., et al. A set of modular plant transformation vectors allowing flexible insertion of up to six expression units. Plant Mol. Biol. 50, 17-27 (2002).
  26. Lee, L. Y., Gelvin, S. B. T-DNA binary vectors and systems. Plant Physiol. 146, 325-332 (2008).
  27. Dafny-Yelin, M., Tzfira, T. Delivery of multiple transgenes to plant cells. Plant Physiol. 145, 1118-1128 (2007).
  28. Yang, P., et al. Purification of the Arabidopsis 26 S proteasome: biochemical and molecular analyses revealed the presence of multiple isoforms. J. Biol. Chem. 279, 6401-6413 (2004).
  29. Fenteany, G., et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science. 268, 726-731 (1995).
  30. Ausobel, F. M., et al. . Current Protocols in Molecular Biology. , (1987).
  31. Rasband, W. S. . ImageJ. , (1997).
  32. Kim, J. H., Kim, W. T. The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high salt and drought stress responses). Plant Physiol. 162, 1733-1749 (2013).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

85 26S

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved