このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
Improved imaging technology is allowing three-dimensional imaging of organs during development. Here we describe a whole organ culture system that allows live imaging of the developing villi in the fetal mouse intestine.
胎児の腸内のほとんどの形態形成のプロセスは、発達段階的な変化のスナップショットを提供し、固定した組織の薄い部分から推論されてきた。薄連続切片から三次元情報が原因完全連続切片を再構築し、連続切片上の組織の適切な向きを維持することの難しさを解釈するために挑戦することができます。グロッセらによる最近の知見。、2011腸1の現像絨毛の形態形成を理解する上で三次元情報の重要性を強調している。単独でラベルされた腸細胞の三次元再構成は、腸管上皮細胞の大部分が頂端および基底表面の両方に接触することを実証した。さらに、上皮の頂端表面でのアクチン細胞骨格の三次元再構成は、腸管腔が連続しており、二次管腔は、複数のアーチファクトであることが示されectioning。これら2点は、腸管上皮におけるinterkinetic核移動の実証とともに、以前に1思った層別化多列上皮としないように開発する腸上皮を定義しました。上皮三次元的に観察する能力は、この点を実証し、胎児の腸上皮形態形成を再定義する精液だった。多光子イメージング技術と三次元再構築ソフトウェアの進化により、無傷の、現像器官を視覚化する能力が急速に向上している。二光子励起は、高解像度の組織への損傷が少ない深い浸透を可能にする。二光子イメージングとウォルトンら全体の胎児のマウスの腸の3D再構成は、2012年には絨毛伸長2のパターンを定義することができました。ここでは、許可する絨毛およびその培養系の拡張のex vivoで開発を可能にする全器官培養系を記述する腸を三次元的にその開発中に撮像される。
Each intestinal villus is composed of two main tissue compartments: an epithelial surface layer and a mesenchymal core. The mouse small intestine is formed at embryonic day 10 when a sheet of endoderm closes and seals to form a tube of epithelium surrounded by mesenchymal cells3. This flat tube of epithelium undergoes rapid proliferation, growing both in length and girth and undergoes dramatic rearrangements involving dynamic cell shape changes1. At the same time, the surrounding mesenchyme also undergoes many developmental processes including the formation of the vascular plexus, differentiation of smooth muscle and recruitment of enteric neurons4. In the proximal small intestine at embryonic day 14.5, condensations (clusters) of Hedgehog- and PDGF-responsive cells begin to form adjacent to the epithelium2,5. Formation of mesenchymal clusters continues to spread along the length of the intestine so that they cover the entirety of the small intestine by embryonic day 16.52. As mesenchymal clusters form, the epithelial cells closest to the clusters begin to withdraw from the cell cycle, while the other epithelial cells continue to proliferate. Those cells directly above the mesenchymal cluster that have withdrawn from the cell cycle begin to change shape as the emerging villus buckles into the lumen. Further growth of the villus is driven in part by the continued proliferation of the epithelium between the emerging villi. The mesenchymal clusters remain tightly adhered to the epithelium of the growing villus and continue to express a variety of signaling molecules. The wave of villus emergence propagates along the length of the small intestine following the formation of mesenchymal clusters. As the intestine continues to grow and the intervillus region extends between emerging villi, new mesenchymal clusters form adjacent to the intervillus epithelium and further rounds of villus emergence and growth ensue6.
Synchronized development of the epithelium and mesenchyme is essential for villus morphogenesis. Signaling molecules are secreted from one layer to the other where receptors receive and transduce the signal message in order to coordinate development between the epithelium and mesenchyme. Mesenchymal clusters act as signaling centers and express a variety of developmental morphogens7-10. Disruption of cluster formation or pattern results in loss of villus emergence and pattern. Inhibition of PDGF signaling results in fewer clusters and fewer villi and those villi that do form are misshapen following the abnormal clusters11. Loss of Hedgehog signaling results in complete loss of cluster formation and failure of villus emergence2,12. Together, these data demonstrate that clusters coordinate development of the villus epithelium with its mesenchymal core.
Using this whole organ culture system, we are able to alter signaling involved in epithelial-mesenchymal cluster cross-talk to determine the role of those signals in villus morphogenesis. Two-photon confocal optical sectioning and reconstruction afford the ability to visualize cluster formation and villus emergence in three-dimensions and better understand the spatial relationships between the mesenchymal clusters and their overlying epithelium. Extending the culture system to four dimensions, we can capture z-stacks of developing clusters and villi over time and observe these interactions. Ultimately, the ability to follow villus development in this manner and observe changes that occur with altered signaling will revolutionize the understanding of epithelial mesenchymal interactions in villus morphogenesis.
注:すべてのマウスを人道的に実験動物医学ミシガン大学医学部号機大学によって承認されたプロトコルを使用し、動物の使用およびケアに関する研究委員会のガイドラインに従って取り扱った。
1全臓器培養システム
固定腸の2イメージング
全腸の3。ライブイメージング
腸fetuseから収穫E12.5後のsは、そのままに接続された大網で、成功した上記のシステムを用いて、培養中の絨毛を開発しています。したがって、このエキソビボシステムは、経時的な形態形成の三次元ビューを再構成することができる現像腸の生のz断面画像の捕捉を可能にする。
このシステムは、薬理学的試薬または組換えタンパク質とシグナル伝達の操作を可能として、胎児腸の全体の外植片の培養は、腸の開発を調整シグナル伝達分子の位置、分布、および期間の分析が可能になります。トランスウェル培養系( 図1Aは 、ウォルトンらから再生される。2012)2が組織上に薬物またはタンパク質浸したアガロースビーズを配置するこ...
動的な性質と途上腸の複雑な組織の相互作用は、これらの形態形成イベントの完全な理解を持つように3次元可視化を必要とします。イメージング技術の進化により、能力が/開発の改善とそれに、器官形成時の空間的なコミュニケーションと相互作用の理解が大幅に強化されている詳細に絨毛の形態形成を調べた。
全体腸を培養するための別の方法も試験されているが、...
The authors have no financial conflicts to disclose.
We gratefully acknowledge Dr. Deborah L. Gumucio as our advisor and for her invaluable support in defining the culture and imaging methods. We also thank Dr. Jim Brodie, Dr. Hong-Xiang Lu, Dr. Charlotte Mistretta, and Dr. Ann Grosse for their contributions to the development of the whole intestine organ culture system. Helpful discussions on imaging provided excellent advice from Dr. Chip Montrose, Michael Czerwinski and Sasha Meshinchi. All imaging was performed in the Microscopy and Image Analysis Laboratory at the University of Michigan. Funding support was provided by NIH R01 DK065850.
Name | Company | Catalog Number | Comments |
Fine dissecting forceps | Fine Science Tools | 11254-20 | 2 pairs |
70% Ethanol | |||
1x sterile Dulbecco's Phosphate-Buffered Saline (DPBS) | Gibco | 14040-133 | 500 ml |
6 well plates | Costar | 3516 | |
24 well plates | Costar | 3524 | |
60 x 15 mm petri dishes | Falcon | 451007 | |
Transwell plates, 24 mm inserts, 8.0 mm polycarbonate membranes | Corning Costar | 3428 | 6 inserts per plate |
BGJb media | Invitrogen | 12591-038 | 500 ml |
PenStrep (10,000U/ml Penicillin; 10,000 mg/ml Streptomycin) | Gibco | 15140 | |
Ascorbic Acid | Sigma | A0278 | make 5 mg/ml stock, filter, aliquot and store at -20 °C |
Mouth pipet (Drummond 1-15 inch aspirator tube assembly) | Fisher | 21-180-10 | remove the aspirator assembly and replace it with a 1,000 µl pipet tip which acts as an adaptor to plug in a 6 inch glass Pasteur pipet. |
6 inch glass pasteur pipets | |||
Capillary Tubes | World Precision Instruments | TW100F-4 | pull to needles |
4% Paraformaldehyde | made in 1 x PBS, pH to 7.3 | ||
Culture plates | Falcon | 353037 | |
Fine mesh stainless steel screen | purchase at hardware store | ||
Polycarbonate membranes | Thomas scientific | 4663H25 | alternatively, cut Corning Costar 3428 membranes off of transwell supports |
Instant glue | purchase at hardware store | gel based preferrably | |
35 x 10 mm plates | Falcon | 351008 | |
7% agarose | Sigma | A9414 | prepare w/v in 1x DPBS, heating to dissolve in a waterbath |
minutien pins | Fine Science Tools | 26002-20 | |
Phenol red free media (DMEM) | Gibco | 21063-029 | |
Xylazine (100 mg/ml) | AnaSed | 139-236 | |
Matrigel | BD | 356231 | basement membrane matrix, growth factor reduced, phenol red-free |
3-4% agarose | Sigma | A9414 | prepare w/v in 1x DPBS, heating to dissolve in a waterbath |
Imaging of fixed intestines | |||
Name of Material/Equipment | Company | Catalog Number | Comments/Description |
vaseline | purchase at pharmacy | used to make VALAP: equal parts vaseline, lanolin, paraffin | |
lanolin | Sigma | L7387 | used to make VALAP: equal parts vaseline, lanolin, paraffin |
paraffin | Surgipath | 39601006 | used to make VALAP: equal parts vaseline, lanolin, paraffin |
70% glycerol in 1 x PBS | |||
Focus clear and Mount Clear | CelExplorer Labs Co. | F101-KIT | |
Modeling clay | purchase at art supply store | ||
double stick tape | |||
cotton applicator swabs | |||
plastic molds, 10mm x 10mm x 5 mm) | Tissue Tek | 4565 | |
slides | |||
coverslips | |||
lab wipe | Kimberly Clark | 34155 | lint free delicate task wipe |
Theiler staging chart | http://www.emouseatlas.org/emap/ema/theiler_stages/ downloads/theiler2.pdf | ||
Leica SP5X confocal microscope | Leica | Used to conduct the live imaging | |
Leica DMI 6000 stand | Leica | Used to conduct the live imaging | |
Aqueous mounting medium (Prolong Gold) | Molecular Probes | P36930 | |
Name of Material/Equipment | Company | Catalog Number | Comments/Description |
24 well plate | Costar | 3524 | |
Triton X-100 | Sigma | T-8787 | used to make Permeabilization solution: 0.5% Triton X-100 in 1 x PBS |
Goat serum | used to make Blocking Solution: 4% Goat serum, 0.1% Tween20 in 1x PBS | ||
Tween20 | Sigma | P9416 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved