このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。
Method Article
125 I標識アジドの合成と銅のないクリック反応を用いて、dibenzocyclooctyne(DBCO) -基コンジュゲート、13-nmサイズの金ナノ粒子の放射性標識のための詳細な手順が記載されています。
Here, we demonstrate a detailed protocol for the radiosynthesis of a 125I-labeled azide prosthetic group and its application to the efficient radiolabeling of DBCO-group-functionalized gold nanoparticles using a copper-free click reaction. Radioiodination of the stannylated precursor (2) was carried out by using [125I]NaI and chloramine T as an oxidant at room temperature for 15 min. After HPLC purification of the crude product, the purified 125I-labeled azide (1) was obtained with high radiochemical yield (75 ± 10%, n = 8) and excellent radiochemical purity (>99%). For the synthesis of radiolabeled 13-nm-sized gold nanoparticles, the DBCO-functionalized gold nanoparticles (3) were prepared by using a thiolated polyethylene glycol polymer. A copper-free click reaction between 1 and 3 gave the 125I-labeled gold nanoparticles (4) with more than 95% of radiochemical yield as determined by radio-thin-layer chromatography (radio-TLC). These results clearly indicate that the present radiolabeling method using a strain-promoted copper-free click reaction will be useful for the efficient and convenient radiolabeling of DBCO-group-containing nanomaterials.
The strain-promoted copper-free click reaction between azides and cyclooctynes has been extensively applied to the efficient bioorthogonal labeling of a wide range of biomolecules, nanomaterials, and living subjects1-7. Due to the excellent site-specificity and rapid reaction rate of this conjugation reaction, it has also been used to synthesize radiolabeled tracers. A few 18F-labeled azide or DBCO prosthetic groups have been prepared for in vitro labeling of various cancers targeting peptides and antibodies, as well as for in vivo pre-targeted imaging of tumors8-13. In addition to these examples, the same conjugation reaction was applied to the metal-radioisotope-labeling of nanomaterials for positron emission tomography (PET) imaging studies14-16.
For several decades, radioactive iodines have been used for biomedical research and clinical trials through PET imaging (124I), single-photon emission computed tomography (SPECT) imaging (123I, 125I), and thyroid cancer treatment (131I)17-21. Therefore, an efficient method for radioactive iodine labeling is fundamentally important for various investigations, including molecular imaging studies, analysis of organ distribution of biomolecules, biomarker identification, and drug development. A copper-free click reaction strategy could be used in radioactive iodine labeling. However, this application has not been investigated as extensively as 18F-labeled biomolecules22-23. Here, we will provide a step-by-step protocol for the synthesis of an 125I-labeled azide for radiolabeling of DBCO-group-derived molecules. The procedures in the present report will include radioiodination of the stannylated precursor, purification steps with HPLC, and solid phase extraction. We also demonstrate efficient radiolabeling of DBCO-group-modified 13-nm-sized gold nanoparticles using the 125I-labeled azide. The detailed protocol in this report will help synthetic chemists understand a new radiolabeling methodology for the synthesis of radiolabeled products.
注意:放射性ヨウ素の酸化形態は非常に揮発性であり、十分なリードシールドとリードバイアルで処理する必要があります。すべての放射化学的手順は風通し木炭濾過フード内で行われるべきであり、実験手順は、放射能検出装置によって監視される必要があります。
125 I標識アジドの合成のための化学物質と逆相カートリッジの調製
125 I標識アジド補欠分子族の2放射合成
DBCO-基結合金ナノ粒子の3合成
4.銅系クリック反応を介したDBCO基修飾金ナノ粒子の放射性標識
スタンニル化前駆体(2)の放射性ヨウ素化反応は、放射性標識生成物を提供するために15分間室温で[125 I] NaIを、酢酸、及びクロラミンTの150 MBqのを使用して実施した(1)。粗混合物を分取HPLC精製後、所望の生成物は、放射化学的収率の75±10%(N = 8)を得ました。分析用HPLCは、125 I標識産物の放射化学的純度は99%以上(
一般的に、精製された125 I標識アジド(1)の観察された放射化学収率は75±10%であった(n = 8)。放射性標識は、放射能の50から150 MBqので達成された、および放射化学的結果は非常に一貫しています。 [125 I] NaIを(T 1/2 = 59.4 d)の放射性ヨウ素化反応に使用した1ヶ月以上放射性崩壊を受け、1の放射化学的収率があることが観察された場...
The authors have nothing to disclose.
This work was supported by grants from the National Research Foundation of Korea, funded by the government of the Republic of Korea, (Grant nos. 2012M2B2B1055245 and 2012M2A2A6011335) and by the RI-Biomics Center of Korea Atomic Energy Research Institute.
Name | Company | Catalog Number | Comments |
Chloramine T trihydrate | Sigma | 402869 | |
[125I]NaI in aq. NaOH | Perkin-Elmer | NEZ033A010MC | |
Sodium metabisulfite | Sigma | S9000 | |
Formic acid | Sigma | 251364 | |
Sep-Pak tC18 plus cartridge | Waters | WAT036800 | |
Dimethyl sulfoxide | Sigma | D2650 | |
Acetone | Sigma | 650501 | |
Ethanol | Sigma | 459844 | |
Gold(III) chloride trihydrate | Sigma | 520918 | |
Tween 20 | Sigma | P1379 | |
DBCO PEG SH (MW 5,000) | NANOCS | PG2-DBTH-5k | |
TLC silica gel 60 F254 | Merck | ||
Analytical HPLC | Agilent | 1290 Infinity | Model number |
Preparative HPLC | Agilent | 1260 Infinity | Model number |
Analytical C18 reverse-phase column | Agilent | Zorbax Eclipse XDB-C18 | |
Preparative C18 reverse-phase column | Agilent | PrepHT XDB-C18 | |
Radio TLC scanner | Bioscan | AR-2000 | Model number |
Radioisotope dose calibrator | Capintec, Inc | CRC -25R dose calibrator | Model number |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved