JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

对于一个125 I标记的叠氮化物的合成和dibenzocyclooctyne(DBCO) -基共轭,13纳米大小的金使用无铜点击反应的纳米粒子的放射性标记的详细过程进行说明。

摘要

Here, we demonstrate a detailed protocol for the radiosynthesis of a 125I-labeled azide prosthetic group and its application to the efficient radiolabeling of DBCO-group-functionalized gold nanoparticles using a copper-free click reaction. Radioiodination of the stannylated precursor (2) was carried out by using [125I]NaI and chloramine T as an oxidant at room temperature for 15 min. After HPLC purification of the crude product, the purified 125I-labeled azide (1) was obtained with high radiochemical yield (75 ± 10%, n = 8) and excellent radiochemical purity (>99%). For the synthesis of radiolabeled 13-nm-sized gold nanoparticles, the DBCO-functionalized gold nanoparticles (3) were prepared by using a thiolated polyethylene glycol polymer. A copper-free click reaction between 1 and 3 gave the 125I-labeled gold nanoparticles (4) with more than 95% of radiochemical yield as determined by radio-thin-layer chromatography (radio-TLC). These results clearly indicate that the present radiolabeling method using a strain-promoted copper-free click reaction will be useful for the efficient and convenient radiolabeling of DBCO-group-containing nanomaterials.

引言

The strain-promoted copper-free click reaction between azides and cyclooctynes has been extensively applied to the efficient bioorthogonal labeling of a wide range of biomolecules, nanomaterials, and living subjects1-7. Due to the excellent site-specificity and rapid reaction rate of this conjugation reaction, it has also been used to synthesize radiolabeled tracers. A few 18F-labeled azide or DBCO prosthetic groups have been prepared for in vitro labeling of various cancers targeting peptides and antibodies, as well as for in vivo pre-targeted imaging of tumors8-13. In addition to these examples, the same conjugation reaction was applied to the metal-radioisotope-labeling of nanomaterials for positron emission tomography (PET) imaging studies14-16.

For several decades, radioactive iodines have been used for biomedical research and clinical trials through PET imaging (124I), single-photon emission computed tomography (SPECT) imaging (123I, 125I), and thyroid cancer treatment (131I)17-21. Therefore, an efficient method for radioactive iodine labeling is fundamentally important for various investigations, including molecular imaging studies, analysis of organ distribution of biomolecules, biomarker identification, and drug development. A copper-free click reaction strategy could be used in radioactive iodine labeling. However, this application has not been investigated as extensively as 18F-labeled biomolecules22-23. Here, we will provide a step-by-step protocol for the synthesis of an 125I-labeled azide for radiolabeling of DBCO-group-derived molecules. The procedures in the present report will include radioiodination of the stannylated precursor, purification steps with HPLC, and solid phase extraction. We also demonstrate efficient radiolabeling of DBCO-group-modified 13-nm-sized gold nanoparticles using the 125I-labeled azide. The detailed protocol in this report will help synthetic chemists understand a new radiolabeling methodology for the synthesis of radiolabeled products.

研究方案

注意:放射性碘的氧化形式是相当挥发性的,且必须有足够的铅屏蔽和铅的小瓶处理。所有放射化学步骤应在通风良好的木炭过滤通风橱中进行,实验程序需要通过放射性检测装置进行监控。

1.化学品和反向相萃取柱的制备125 I标记的叠氮合成

  1. 在溶液试剂的制备
    1. 溶解1毫克150微升叠氮化物前体(2)无水乙醇( 图1)。
      注:叠氮化物前体的详细合成步骤(2)据报道,在以前的论文22。
    2. 在20μl1×磷酸盐缓冲盐水(pH = 7.4)的溶解1毫克的氯胺T。
    3. 溶解2毫克焦亚硫酸钠在20μlH 2 O
  2. Prepara墨盒化
    1. 用10ml无水乙醇,然后用10毫升水2 O洗tC18柱不干燥与空气筒的矩阵。

2. 125 I标记的叠氮化辅基的放射合成

  1. 前体的放射性碘化反应
    1. 添加叠氮化物前体溶液(1毫克150微升绝对乙醇)和乙酸(10微升)到1.5ml微量离心管中。
    2. 在0.1M的NaOH(50微升)添加的[125 I]碘化钠150活度到反应混合物中。
    3. 添加氯胺T溶液(1mg在20μl1×磷酸盐缓冲盐水),并关闭含有微量离心管反应混合物。
    4. 在室温下孵育该反应混合物15分钟,直到放射性碘化反应完成。
    5. 一个焦亚硫酸钠溶液(2毫克在20μlH 2 O)加入到该反应混合物以猝灭放射性碘化反应。
    6. 撤回0.2微升粗产物,然后用100微升的溶液稀释(H 2 O / CH 3 CN,1:1)进行HPLC分析。
      注:对于所有的HPLC实验中,使用含有H 2 O(溶剂A)0.1%甲酸和0.1%甲酸含酸乙腈(溶剂B)作为洗脱剂。
    7. 通过使用反相分析放射性HPLC(分析稀释粗产物C18反相柱;流速:1ml /分钟;洗脱剂梯度:0-2分钟,20%溶剂B,20-80%溶剂B为2-22分钟,为22-23分钟80-100%溶剂B,和100%溶剂B为23-28分钟;保留时间:16.4分钟)( 图2)。
  2. 用制备HPLC纯化粗产物
    注意:提供围绕型HPLC份足够铅屏蔽诸如喷射器,柱,检测器,收集瓶,并在其中流出物被收集在容器。
    1. 第撤Ë整个反应混合物倒入HPLC小瓶。冲洗,用乙腈(0.5毫升)的反应管中,加入漂洗到相同的注射小瓶中。稀释用H 2 O(1毫升)中收集的溶液。
    2. 注入粗产物到制备放射性HPLC(C18反相柱;流速:10ml /分钟;洗脱剂梯度:20%溶剂B为0-2分钟,20-80%溶剂B为2-22分钟,为22-23分钟80-100%溶剂B,以及用于23-28分钟100%溶剂B)。
    3. 收集表示125 I标记的叠氮化物(1)的放射性峰( R这些HPLC条件下是17.8-18.8分钟)中的玻璃试管( 图2)。
    4. 测量使用根据制造商的协议的放射性剂量校准馏分的放射化学产率。
    5. 注入纯化产品上使用,用于确定产物的放射化学纯度的相同HPLC条件分析放射性HPLC。
  3. 固相萃取的产物
    1. 稀释含用40ml纯H 2 O所需的产物(1)的级分
    2. 添加稀释的溶液成预处理tC18柱。
    3. 用另外的15毫升水2 O洗盒
    4. 洗脱被困在盒用2毫升丙酮到由一铅屏蔽保护的10-ml玻璃管制瓶内的产品(1)。测量使用根据制造商的协议的放射性剂量校准洗脱产物的放射性。
      注:二甲基亚砜(DMSO)或无水乙醇也可用于从盒中的产品的溶出。放射性的约5-10%,通常粘附在盒中,而剩余的放射性标记的产物不能通过使用过量的有机溶剂完全洗脱。
    5. 蒸发用氮气或氩气的气流的丙酮。
    6. 化解重用DMSO(100-200微升)为下放射性标记步骤sidue。

3. DBCO群结合的金纳米粒子的合成

  1. 13纳米大小的金表面改性与DBCO含基的聚乙二醇纳米粒
    1. 制备钠-柠檬酸盐稳定的金纳米粒子(3)(平均粒度= 13纳米)根据先前的报告24。
    2. 添加吐温20(1毫米,1.5毫升)的水溶液的柠檬酸盐稳定的金纳米粒子(10纳米,15毫升)。摇上轨道摇床进行20分钟的溶液中。
    3. 添加DBCO含有基团的聚乙二醇硫醇(平均分子量= 5,000,100μM,1.5毫升)的水溶液。摇上轨道摇床2小时的溶液中。
  2. 所述DBCO团改性金纳米颗粒的纯化
    1. 净化DBCO团改性的金纳米粒子(4)</ STRONG>是通过连续离心(11400 XG,15分钟×3)。
    2. 倒出上清液并加入纯水金纳米颗粒粒料再悬浮。

4.通过无铜点击反应DBCO团改性金纳米粒子的放射性标记

  1. 使用125 I标记的叠氮化物125 I标记的金纳米颗粒的合成(1)
    1. 通过使用离心分离(11400 xg离心,15分钟)制备DBCO团改性金纳米颗粒的浓溶液,并调整金纳米颗粒的浓度为2μM。
    2. 添加在DMSO(5微升)的125 I标记的叠氮化物(1)的4.1活度的悬浮液金纳米粒子(4)(2μM,50微升)。
    3. 孵育在40℃下将所得反应混合物60分钟。
    4. 从粗产物撤回等分试样(0.2微升),并将其应用到二氧化硅 - 共ated薄层色谱(TLC)板。
    5. 开发使用乙酸乙酯作为流动相的TLC板上。
    6. 放置在无线电型TLC扫描器TLC板上并运行扫描器监视根据制造商的方案的放射性标记反应( 图3)。
  2. 粗产物的纯化
    1. 净化含有125 I标记的金纳米颗粒(4)通过离心(11400 xg离心,15分钟),将反应混合物。
    2. 倒出上清液并加入纯水金纳米颗粒粒料再悬浮。
    3. 从纯化的产物撤回等分试样(0.2微升),并将其应用到一个二氧化硅包覆TLC板上。
    4. 开发使用乙酸乙酯作为流动相的TLC板上。
    5. 放置在无线电型TLC扫描器TLC板上并运行扫描器,以确定125 I标记勒的放射化学产率和放射化学纯度ð纳米颗粒(4)( 图3)根据制造商的协议。

结果

所述stannylated前体(2)的放射性碘化反应进行了使用[125 I]碘化钠,乙酸,和氯胺T 150活度在室温下15分钟,以提供放射性标记的产物(1)。粗混合物的制备HPLC纯化后,用放射化学产率的75±10%(N = 8)中得到所需产物。分析性HPLC显示,125 I标记产物的放射化学纯度是99%以上( 图2),和产品1所观察到的?...

讨论

在一般情况下,纯化的125 I标记的叠氮化物(1)所观察到的放射化学产率为75±10%(N = 8)。放射性标记用放射性50-150活度完成,放射化学的结果是相当一致的。如果[125 I]碘化钠(T 1/2 = 59.4 D)将经历放射性衰变了一个多月的放射性碘化反应时,观察到1放化收益率将略有下降(53-65%)。因此,我们建议,因为它产生的[125 I]碘化钠?...

披露声明

The authors have nothing to disclose.

致谢

This work was supported by grants from the National Research Foundation of Korea, funded by the government of the Republic of Korea, (Grant nos. 2012M2B2B1055245 and 2012M2A2A6011335) and by the RI-Biomics Center of Korea Atomic Energy Research Institute.

材料

NameCompanyCatalog NumberComments
Chloramine T trihydrateSigma402869
[125I]NaI in aq. NaOHPerkin-ElmerNEZ033A010MC
Sodium metabisulfite SigmaS9000
Formic acidSigma251364
Sep-Pak tC18 plus cartridgeWatersWAT036800
Dimethyl sulfoxide SigmaD2650
AcetoneSigma650501
EthanolSigma459844
Gold(III) chloride trihydrateSigma520918
Tween 20 SigmaP1379
DBCO PEG SH (MW 5,000)NANOCSPG2-DBTH-5k
TLC silica gel 60 F254Merck
Analytical HPLCAgilent1290 InfinityModel number
Preparative HPLCAgilent1260 InfinityModel number
Analytical C18 reverse-phase columnAgilentZorbax Eclipse XDB-C18
Preparative C18 reverse-phase columnAgilentPrepHT XDB-C18
Radio TLC scannerBioscanAR-2000Model number
Radioisotope dose calibratorCapintec, IncCRC -25R dose calibratorModel number

参考文献

  1. Jewett, J. C., Bertozzi, C. R. Cu-free Click Cycloaddition Reactions in Chemical Biology. Chem. Soc. Rev. 39, 1272-1279 (2010).
  2. Debets, M. F., et al. Bioconjugation with Strained Alkenes and Alkyne. Acc. Chem. Res. 44, 805-815 (2011).
  3. Sletten, E. M., Bertozzi, C. R. From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions. Acc. Chem. Res. 44, 666-676 (2011).
  4. Koo, H., et al. Bioorthogonal Cu-Free Click Chemistry in vivo for Tumor-Targeted Delivery of Nanoparticles. Angew. Chem. Int. Ed. 51, 11836-11840 (2012).
  5. Chang, P. V., et al. Copper-Free Click Chemistry in Living Animals. Proc. Natl. Acad. Sci. U. S. A. 107, 1821-1826 (2010).
  6. Bostic, H. E., Smith, M. D., Poloukhtine, A. A., Popik, V. V., Best, M. D. Membrane Labeling and Immobilization via copper-free Click Chemistry. Chem. Commun. 48, 1431-1433 (2012).
  7. Someya, T., Ando, A., Kimoto, M., Hirao, I. Site-Specific Labeling of RNA by Combining Genetic Alphabet Expansion Transcription and Copper-Free Click Chemistry. Nucl. Acids Res. 43, 6665-6676 (2015).
  8. Lee, S. B., et al. Mesoporous Silica Nanoparticle Pretargeting for PET Imaging Based on a Rapid Bioorthogonal Reaction in a Living Body. Angew. Chem. Int. Ed. 52, 10549-10552 (2013).
  9. Sachin, K., et al. F-18 Labeling Protocol of Peptides Based on Chemically Orthogonal Strain-Promoted Cycloaddition under Physiologically Friendly Reaction Conditions. Bioconjugate Chem. 23, 1680-1686 (2012).
  10. Evans, H. L., et al. Copper-Free Click - A Promising Tool for Pre-targeted PET Imaging. Chem. Commun. 48, 991-993 (2012).
  11. Campbell-Verduyn, L. S., et al. Strain-Promoted Copper-Free "Click" Chemistry for 18F Radiolabeling of Bombesin. Angew. Chem. Int. Ed. 50, 11117-11120 (2011).
  12. Arumugam, S., Chin, J., Schirrmacher, R., Popik, V. V., Kostikov, A. P. 18F]Azadibenzocyclooctyne ([18F]ADIBO): A Biocompatible Radioactive Labeling Synthon for Peptides using Catalyst Free [3+2] Cycloaddition. Bioorg. Med. Chem. Lett. 21, 6987-6991 (2011).
  13. Bouvet, V., Wuest, M., Wuest, F. Copper-Free Click Chemistry with the Short-Lived Positron Emitter Fluorine-18. Org. Biomol. Chem. 9, 7393-7399 (2011).
  14. Satpati, D., Bauer, N., Hausner, S. H., Sutcliffe, J. L. Synthesis of [64Cu]DOTA-ADIBON3-Ala-PEG28-A20FMDV2 via Copper-Free Click Chemistry for PET Imaging of Integrin αvβ6. J. Radioanal. Nucl. Chem. 302, 765-771 (2014).
  15. Lee, D. E., et al. Facile Method To Radiolabel Glycol Chitosan Nanoparticles with 64Cu via Copper-Free Click Chemistry for MicroPET Imaging. Mol. Pharmaceutics. 10, 2190-2198 (2013).
  16. Zeng, D. 64Cu Core-Labeled Nanoparticles with High Specific Activity via Metal-Free Click Chemistry. ACS Nano. 6, 5209-5219 (2012).
  17. Jeon, J., et al. Radiosynthesis and in vivo Evaluation of [125I]2-4(iodophenethyl)-2-Methylmalonic Acid as a Potential Radiotracer for Detection of Apoptosis. J. Radioanal. Nucl. Chem. 308, 23-29 (2016).
  18. Adam, M. J., Wilbur, D. S. Radiohalogens for Imaging and Therapy. Chem. Soc. Rev. 34, 153-163 (2005).
  19. Jeon, J., et al. Radiosynthesis of 123I-Labeld Hesperetin for Biodistribution Study of Orally Administered Hesperetin. J. Radioanal. Nucl. Chem. 306, 437-443 (2015).
  20. Kil, K. E., et al. Development of [123I]IPEB and [123I]IMPEB as SPECT Radioligands for Metabotropic Glutamate Receptor Subtype. ACS Med. Chem. Lett. 5, 652-656 (2014).
  21. Chen, M. K., et al. The Utility of I-123 Pretherapy Scan in I-131 Radioiodine Therapy for Thyroid Cancer. Thyroid. 22, 304-309 (2012).
  22. Jeon, J., et al. Efficient Method for Iodine Radioisotope Labeling of Cyclooctyne-Containing Molecules using Strain-Promoted Copper-Free Click Reaction. Bioorg. Med. Chem. 23, 3303-3308 (2015).
  23. Choi, M. H., et al. Synthesis and Evaluation of an 125I-Labeled Azide Prosthetic Group for Efficient and Bioorthogonal Radiolabeling of Cyclooctyne-Group Containing Molecules using Copper-Free Click Reaction. Bioorg. Med. Chem. Lett. 26, 875-878 (2016).
  24. Kim, Y. H., et al. Tumor Targeting and Imaging Using Cyclic RGD-PEGylated Gold Nanoparticle Probes with Directly Conjugated Iodine-125. Small. 7, 2052-2060 (2011).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

116

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。