Method Article
リザーバ状態で二酸化炭素と平衡状態にある原油のレオロジーを測定する方法を提示する。
高温高圧下での二酸化炭素(CO 2 )との平衡状態における原油のレオロジーを測定するレオメーターシステムが記載されている。このシステムは、循環ループに接続された高圧レオメーターを含む。レオメーターには、同軸シリンダーとダブルギャップの2つの代替形状を備えた回転式フロースルー測定セルがあります。循環ループには、原油サンプルをCO 2と平衡させるためのミキサーと、ミキサーからレオメーターに混合物を輸送し、ミキサーに戻すギアポンプが含まれています。 CO 2および原油を攪拌および循環によって平衡させ、飽和混合物のレオロジーをレオメーターで測定する。このシステムを使用して、最高220バールの圧力および50℃の温度で、Zuata原油(およびそのトルエン希釈物)のCO 2との平衡状態におけるレオロジー特性を測定する。結果は、ハットCO 2添加は、最初にCO 2圧力が増加するにつれて粘度を低下させ、次いで粘度を閾値圧力以上に増加させて、油レオロジーを有意に変化させる。原油の非ニュートン反応は、CO 2の添加によって変化することも見られる。
CO 2および原油混合物の物理的特性に関する文献のほとんどでは、粘度は粘度計を用いて測定され、測定は一定のせん断速度またはせん断応力で行われることを意味する。これらの研究では、CO 2と原油混合物の粘度を簡単な方法で調べます。興味深いのは、粘度と他のパラメータ(温度、圧力、CO 2濃度など)との関係です。これらの研究で行われた主な仮定は、明示的に言及されていないが、CO 2と原油の混合物がニュートン流体として振る舞うということである。しかしながら、いくつかの原油、特に重質原油は、特定の条件下で非ニュートン挙動を示すことができることはよく知られている1,2,3,4 。したがって、CO 2効果を十分に理解するためには、CO 2の粘度および原油混合物はせん断速度または応力の関数として研究されるべきである。
私たちの知る限りでは、Behzadfar et al 。レオメーター5を用いて異なる剪断速度でCO 2添加した重質原油の粘度を報告している。 Behzadfar らによる測定では、CO 2と原油との混合は、同軸円筒形状の内部円筒の回転によって達成され、これは非常に遅いプロセスである。さらに、ポリマー溶融物のレオロジーに及ぼすCO 2溶解の影響は、重質原油およびCO 2混合物の研究に照らして明らかになるであろう文献に報告されている。 Royer ら高圧押出スリットダイレオメーター6を使用して、様々な圧力、温度およびCO 2濃度での3つの市販のポリマー溶融物の粘度を測定する。彼らは自由な容積を通してデータを次に分析します e理論。他の同様の研究は、Gerhardt et al 。 7 and Lee et al 。 8 。外部ミキサーで混合を行い、同軸円筒形状でレオロジー測定を行う本発明者らの方法は、CO 2および原油混合物のレオロジーのより完全な測定を可能にする。
私たちが開発した循環システムには、 図1と図2に示すように、シリンジポンプ、ミキサー、ギアポンプ、レオメーターの4つのユニットが含まれています。撹拌棒をミキサーの底部に配置し、回転磁石セットと磁気的に結合する。撹拌はミキサー内のCO 2と原油との混合を促進するために使用され、相間の平衡へのアプローチを高速化する。 CO 2飽和油相は、ディップチューブを用いてミキサーの底部近くから抜き取られ、測定システムに循環される。
nt ">粘度はレオメーターに取り付けられた高圧セルで測定されます。圧力セルには、粘性流体の測定用に設計された同軸シリンダージオメトリと、低粘度用途のためのダブルギャップ形状。
図1:同軸円筒形状の圧力セルを有する循環システムの方式。青い線はCO 2の流れを表し、黒い線は原油の混合物を表す。 Hu らの許可を得て転載。 14 。 Copyright2016 American Chemical Society。 この図の拡大版を見るには、ここをクリックしてください。
e 2 "class =" xfigimg "src =" / files / ftp_upload / 55749 / 55749fig2.jpg "/>
図2:ダブルギャップ形状の圧力セルを有する循環システムの方式。青い線はCO 2の流れを表し、黒い線は原油の混合物を表す。 この図の拡大版を見るには、ここをクリックしてください。
図3:同軸円筒形状の圧力セル。 この図の拡大版を見るには、ここをクリックしてください。
同軸シリンダージオメトリ圧力セル( 図3 )は、内側シリンダーと外側シリンダーの間に0.5 mmの隙間を持ち、サンプル量18mLであった。内側シリンダはレオメータースピンドルに取り付けられた回転カップと磁気的に結合されています。内筒の上下には、内筒の回転軸に直接接触する2つのサファイアベアリングがあります。サファイアベアリングは設計によりサンプルにさらされるので、ベアリングの摩擦はサンプルの潤滑特性に応じて変化する可能性があります。
図4:ダブルギャップ形状の圧力セル。 この図の拡大版を見るには、ここをクリックしてください。
他方、ダブルギャップ圧力セルは、 図4に示すように、ダブルギャップ形状の円筒形ロータを含む。測定シリンダは、2つのボールベアリングを介して圧力ヘッド上に配置され、レオメータースピンドルに接続された回転カップと磁気的に結合される。ボールベアリングは圧力ヘッドの内側に位置し、測定ギャップに注入された試料と接触していないので、固定容器の凹部にオーバーフローし、そこから混合容器に戻される。
典型的な実験では、原油試料を最初にミキサーに装填する。系全体を原油でプライミングした後、系内の残りの容積を真空ポンプを用いて排気する。次いで、CO 2をシリンジポンプを通してミキサーに導入し、システムを所望の温度および圧力にする。システム圧力は、シリンジポンプによってCO 2相を通して制御される。圧力が安定すると、攪拌機が作動してCO 2と原油とがミキサー内で混合される。次に、ギアポンプをオンにして、油相をレオメーターを満たし、流体をミキサーに再循環させる。したがって、CO 2と原油との混合は、ミキサー内で同時に撹拌し、ループ内を循環することによって行われる。平衡状態は、シリンジポンプの容量と混合物粘度の両方の定期的な測定によってモニターされる。容積と粘度の両方に変化(≦4%)がない場合、平衡が確認されます。その段階で、ギアポンプとスターラーを切って、測定セルを通る流れを停止させ、レオロジー測定を実施する。
注:実験は高温高圧で行われるため、安全性が最も重要です。システムは、シリンジポンプコントローラのソフトウェア制限と、ミキサーおよびギアポンプとレオメーターの間のバーストディスク( 図1および図2を参照)によって過度の圧力から保護されています。さらに、各実験の前に、定期的なリークチェックを行うことをお勧めします。また、レオメーターが良好に機能していることを確認するために、圧力セルの形状の摩擦チェックを実行することをお勧めします。
1.原油サンプルの準備
注:Zuata原油サンプルは受け取ったものを使用してください。以下の表は、ズワタ原油の基本的な物理的性質を示しています。
チャー技術 | 値 |
API重力 | 9.28 |
バレル係数(bbl / t) | 6.27 |
総硫黄(%wt) | 3.35 |
リード蒸気圧(kPa) | 1 |
流動点(℃) | 24 |
既存のH 2 S含有量(ppm) | - |
潜在的なH 2 S含有量(ppm) | 115 |
潜在的HCl含有量(ppm) | - |
Calc。グロスカル。値(kJ / kg) | 41,855 |
表1:ズアタ原油の物性
2.原油サンプルをミキサーに装填する
3.原油サンプルを用いた全システムプライミング
4.システム内の残りのボリュームを空にする
5. CO 2をミキサーに導入する
6.温度と圧力の設定
8.ミキサー内の体積および混合物粘度のモニタリング
9.レオロジー測定の実施
10.次の希望値への圧力の増加
Zuata原油とそのCO 2飽和混合物のレオロジー測定は、 図5および図6に示すように、同軸シリンダー形状の圧力セルを用いて50℃で行った。 図5は周囲から100バールまでの測定値を示し、 図6は120バールから220バールまでの測定値を示しています。さらに、 図7は、相対粘度を示しており、これは、与えられた剪断速度での粘度と、最も低い剪断速度での粘度との比である。 図7の破線は、ジオメトリのベアリングの摩擦によって生じる最大測定誤差です。
希釈されたズアタ原油の50℃でのレオロジー測定は、ダブルギャップ形状の圧力セルを用いて、i図8および図9によって示され、 図10は、70バールまでの圧力に対する相対粘度を示す。さらに、 図10は、周囲圧力の希釈原油がニュートン流体として挙動することを示している。しかしながら、CO 2圧が30バール〜60バールであるとき、せん断希釈効果が観察される。 CO 2圧力が60barを超えると、せん断薄化が消失し、混合物は再びニュートン流体として挙動する。
図5および図6から、CO 2の溶解が100バールまで原油混合物の粘度を有意に低下させることが分かる。 CO 2圧が100バールを超えると、CO 2圧の増加と共に油混合物の粘度は増加するが、はるかに低い速度である。
図7は、ズワタ原油が二酸化炭素を添加しないでせん断減量効果を示していることを示しています。 CO 2が原油に溶解されると、より高いCO 2圧力での曲線がより平坦になるので、せん断希釈効果は弱められる。 40barより高いCO 2圧力では、せん断速度を伴う粘度変化が測定誤差範囲内にあり、したがって混合物はニュートンであるとみなすことができる。 CO 2の溶解が弱まり、最終的にズワタ原油のせん断減粘効果がなくなる。これは、原油中に溶解したCO 2分子が、最終的には、アスファルテンのような原油中の巨大分子によって生成された会合ネットワークを破壊する可能性があることを示している。図8に示す希釈原油は、CO 2 ad70バールで油混合物の粘度を最小限に劇的に減少させる。 CO 2圧が70バールを超えると( 図9 )、CO 2圧が高くなると油の粘度が上昇します。
Seifried らによる研究によれば、 図11に示すように 、原油および希釈ズワタ原油の両方において、アスファルテン沈殿の開始は80バールを超えるCO 2圧力で起こる。しかし、圧力が80バールより高いレオロジー実験では、原油/ CO 2混合物はニュートン流体として挙動する。これは、アスファルテン沈殿がこの混合物のレオロジー特性を変えないことを意味する。
希薄原油のレオロジー結果もまた興味深い:この場合、CO 2溶解は非ニュートン挙動を生じさせ、これは唯一のappCO 2圧のある範囲の耳。ここでは、CO 2添加によって誘発されたせん断減粘効果について2つの推測が与えられている。
最初の推測は、非ニュートン挙動が、CO 2溶解下のアスファルテン分子によって形成されたミセルによって引き起こされるということである。原油中に溶解したCO 2は、アスファルテン凝集体の構造に対するその作用によって、系の臨界ミセル濃度(CMC)を低下させることができ、これはミセル12間の相互作用をより大きくすることができる。 30〜60バールの圧力で、アスファルテンミセル間の距離は、ファンデルワールス引力13の有効範囲内にあり得る。従って、ミセルの間に会合ネットワークが形成され、せん断希釈効果が生じる。しかし、圧力が60バールを超えると、溶媒または非アスファルテン分子に対するCO 2の影響は、domこれはCMCを増加させる。したがって、アスファルテンミセルは不安定化し、結果的に会合ネットワークは消失する。
第2の推測は、位相行動の観点に基づいている。 30バールと60バールの間のCO 2圧力では、CO 2に富む液相が生成され、混合物を液体 - 液体 - 蒸気(LLV)系にすることができる。この2つの液体のエマルションは、2つの液相の同様の密度による攪拌および循環による混合によって形成することができた。エマルションの分散相として、CO 2に富む液相は、原油中のアスファルテンによって安定化され得る。この乳剤は、分散相が会合ネットワークを生じさせるため、非ニュートン性の挙動を示す。しかし、60バールより高い圧力でより多くのCO 2が油混合物に溶解すると、2つの液相が再び混和するようになる。結果は CO 2に富む蒸気と平衡状態にある原油に富む液体から成り、原油に富む液相はニュートン流体として挙動する液体 - 蒸気(LV)系である。
図5. 50℃および様々な剪断速度でCO 2を用いたZuata重質原油の粘度測定。 せん断速度限界が低い。
、周囲;
、20バール;
、40バール;
、60バール、
、80バール; Hu らの許可を得て転載15.著作権2016 American Chemical Society。 この図の拡大版を見るには、ここをクリックしてください。
図6. 50℃のCO 2と様々な剪断速度でのZuata重質原油の粘度測定。 せん断速度限界が低い。
、120バール;
、140バール;
160バール;5749 / 55749_orangeDot.jpg "/>、180 bar;
、200バール;
、220バール。 Hu らの許可を得て転載。 15 。 Copyright2016 American Chemical Society。 この図の拡大版を見るには、ここをクリックしてください。
図7. 50℃でのCO 2および様々なせん断速度でのZuata原油の相対粘度。 - 、測定変動幅; 、周囲圧力;
、20バール;
src = "/ files / ftp_upload / 55749 / 55749_orangeDot.jpg" />、40 bar;
、60バール、
、80バール;
、100バール;
、120バール;
、140バール;
160バール;
、180バール;
、220バール。 Hu らの許可を得て転載。 15 。 Copyright2016 American Chemical Society。 この図の拡大版を見るには、ここをクリックしてください。
図9. 50℃および様々な剪断速度でのCO 2を用いた希釈原油の粘度測定。 せん断速度限界が低い。
、80バール;
、100バール;
、120バール;
、140バール;
160バール;
src = "/ files / ftp_upload / 55749 / 55749_lBlueX.jpg" />、180 bar;
、200バール;
、220バール。 この図の拡大版を見るには、ここをクリックしてください。
図10は、希釈された原油の50℃および様々な剪断速度でのCO 2による相対粘度である。 - 、測定変動幅; 、1バール;
、10バール;
、20バール;tp_upload / 55749 / 55749_lGreenDiamond.jpg "/>、30 bar;
、40バール;
、50バール;
、60バール、
、70バール。 この図の拡大版を見るには、ここをクリックしてください。
操作には2つのステップが重要です。最初のものは原油サンプルによってシステム全体を下塗りしています。システムに原油サンプルを充填することによって、ギアポンプは油サンプルによって十分に潤滑され、循環ループ内のいかなる閉塞も容易に識別することができる。ギヤポンプの破損を防止することができる。第2の重要なステップは、CO 2と原油との間の平衡を確認するために混合物粘度を定期的に監視することである。 CO 2と粘稠な重質原油16との間の平衡に達するのにかなりの時間がかかることを考慮すると、レオロジー測定をあまりに早く行うことは、CO 2添加が油の粘度に及ぼす影響を過小評価する。したがって、測定された粘度が一定値(4%未満の変化)に達したときのみ、混合物はCO 2との平衡状態で考慮され得る。
電流測定システムのみCO 2飽和混合物のレオロジー測定を可能にする。不飽和混合物を測定するために、上流の容器をCO 2流に導入することができた。 CO 2は、最初に上流の容器に導入され、次いで、上流の容器の容積および圧力によってCO 2の量が制御され得るように、供給源から隔離される。この場合のシステムの全圧は、ヘリウムなどの不活性ガスによって制御される。 Kariznovi et al 。 CO 2および重質原油混合物17の物理的特性を測定するために使用される装置についての良好な概説を提供する。変更は、論文でレビューしたシステムを参照することができます。
本明細書に記載されたシステムは、あらゆる気液混合物のレオロジーを測定することができることを述べるべきである。したがって、その適用は原油に限定されない。例えば、それはrh上のCO 2効果を測定するために使用することができるピカリングエマルション18,19および気体誘導可塑化の機構6 。レオメーター圧力セルに導電率測定装置を導入することによって、エマルジョンの剪断誘起転相に対するガス溶解の効果もまた、20,21,22,23で検討することができた。
著者は何も開示することはない。
著者らは、Qatar Petroleum、Shell、Qatar Science and Technology Parkが共同で提供しているQatar Carbonates and Carbon Storage Research Center(QCCSRC)からの資金を感謝しています。著者たちは原油サンプルを提供してくれたFrans van den Berg(Shell Global Solutions、Amsterdam、オランダ)に感謝します。
Name | Company | Catalog Number | Comments |
Heavy Crude Oil | Shell | N/A | Produced from the Zuata oil flied. Used without further treatment |
Toluene | Sigma-Aldrich | 244511-2L | Anhydrous, 99.8%. Used without further treatment |
CO2 | BOC | 111304-F | CP Grade. Used without further treatment |
Name | Company | Catalog Number | Comments |
Syringe Pump | Teledyne ISCO | 65D | |
Mixer | Parr Instruments | 4651 | Vessel volume 250 mL. Mounted on a series 4923EE bench-top heater |
Gear Pump 1 | Polymer Systems Inc. | CIP-12/1.5 | Used with CC29/Pr pressure cell for high viscosity fluids. |
Gear Pump 2 | Micropump | GAH X21 | Used with DG35.12/Pr pressure cell for low viscosity fluids. |
Rheometer | Anton Paar | MCR301 | |
Pressure cell 1 | Anton Paar | CC29/Pr | With flow-through configuration. Used for high viscosity fluids. Coaxial cylinder geometry |
Pressure cell 2 | Anton Paar | DG35.12/Pr | With flow-through configuration. Used for low viscosity fluids. Double gap geometry |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved