Method Article
このプロトコルでは、線虫みみずの動作における神経活動の変更を記録する遺伝子にエンコードされた Ca2 +記者の使用について説明します。
麻酔下または固定化の動物で見られると動物の行動の神経回路の活動が大幅に異なることがますます明らかになった。Ca2 +の感度が高く、遺伝的コード化蛍光レポーター細胞とシナプス行動中の動物の非侵襲的な光学的なアプローチを使用しての録音をもたらしました。遺伝と組み合わせることが状態を識別することができます別の動作中に電池と回路の活動を調節する光技術、分子メカニズムと。
ここで我々 はレシオ メトリック線虫みみずを自由行動下の単一ニューロンの Ca2 +イメージングの方法を説明します。記録される動物を許可する標準線虫成長メディア (NGM) 寒天上に成長するオーバーレイ ワーム ブロック ガラス coverslip 優しく簡単な土台の技術を示す無制限の移動と行動中に高解像度。この手法により、機密性の高い Ca2 +記者 GCaMP5 を使用して、彼らは産卵行動をドライブとして細胞内 Ca2 +セロトニン両性具有者特定ニューロン (HSNs) の変更を記録します。MCherry、Ca2 +の共発現による-区別しない蛍光タンパク質内ハイブリッドスパイクニューロンの位置を追跡できる 〜 1 μ m とフォーカスや動きの変化によって引き起こされる蛍光性の変動のために正しい。同時、赤外対物レンズ行動記録や電動ステージを使用して動物の追跡ができます。これらの顕微鏡技術とデータ ストリームを統合することにより数十分アクティブと非アクティブの動作状態の進行状況に合わせて、線虫卵産卵回路で Ca2 +活動を記録できます我々。
神経科学の中心的な目標は、ニューロンの動物の行動をドライブする回路の通信方法を理解することです。神経回路は、回路の活動、動物、環境に対応するために必要な行動の変化がそれにより運転を変更するために多様な感覚的手がかりの範囲を統合します。線虫のc. の elegans 302 個のニューロンがシナプス接続が完全にマップされた1である単純な神経システムがあります。さらに、神経伝達に関与するタンパク質をコードする遺伝子はc. の elegansや哺乳類の2間非常に節約されます。その神経系の解剖学的なシンプルさにもかかわらずそれはニューロンが動作3を調整する方法を理解する肥沃なプラットフォームを提供する保存された行動の複雑なレパートリーを表示します。
線虫は遺伝子操作レーザーアブレーション セル、電気生理学的手法と同様生体内で4,5をイメージング光学などのアプローチの広い範囲のアプリケーションに従う義務があります。最近の研究は主要な神経伝達物質信号線虫など、コリン作動性の gaba 作動性ニューロン ネットワーク システムの詳細な地図を作り出した。すべて神経の G タンパク共役型受容体の発現をマップする継続的な研究とともに、これらの研究は、非常に詳細な構造を活用するユニークな位置にこのモデルを配置し、機能的な神経結合マップ完全に理解してどのようにこれら異なった受容体と動物の行動のさまざまな側面をドライブする時間スケールを介して信号を異なる神経伝達物質。
任意のシステムでダイナミックな神経活動パターンを研究するために必須の前提条件は、個々 のニューロンの全体の回路動作中にアクティビティを記録する堅牢な方法論を開発します。シナプス小胞の融合をドライブ シナプス前の活動を可視化するような光学的なアプローチは特に重要です。細胞内 Ca2 +敏感な光検出器の増加空室状況と一緒に高速かつ高感度蛍光レポーターの動作中にセルと目を覚まし、生きている動物のシナプスの活動の記録をもたらしました。電気シナプスの主要な結果は Ca2 +チャネルを調整すること、ので、細胞活性の忠実に行動に関連する変更を報告する細胞内 Ca2 +の変更が考えられます。
本研究ではc. の elegans6,7で産卵行動を促進するセロトニンの HSN 運動ニューロンのレシオ メトリック Ca2 +イメージングを実行する手法を提案します。このアプローチは基づいて動作5,8,9,10,11 時にc. の elegansの Ca2 +活動と産卵回路を視覚化するための以前の努力.メソッドは、動物の歩行状態の変化と同様、産卵イベント セル/回路活動の観察された変化を同時に関連付けることができます。このアプローチを使用して、大人のワームの活動を研究する、著作当研究室から 4 (L4) 幼虫同様で幼若動物にこのアプローチを拡張できることを示しています。そう異なる回路と行動で他の線虫のニューロンの活動はこの手法と同様にアクセスできるはずです。その他は最近高速 Ca2 +インジケーター非重複発光スペクトル12,13,14,15,16、光遺伝学的ツール17 を開発と遺伝的膜電圧18光指標をエンコード、神経回路の活動の変化が固有の動作状態を駆動する方法に貫通全光調査を行うことができる必要があります。
1 系統、文化メディア、および動物の取り付け
2. ハードウェアと計測のセットアップ
3. レシオ メトリック Ca2 +イメージングと行動記録
4. 画像のセグメンテーションと定量解析
ここで説明した簡単な土台の技術 (図 1) は、高解像度のガラス基板 (図 4) を介して動物の行動の記録を可能にしながら L4 と大人のc. の elegans文化環境に最小限の変更を発生します。良い高開口数目標 (0.7-0.8) と倍率 (20 倍) を 1 h 中間を提供する LED 光源、ステージ コント ローラー、およびカメラのエクスポー ジャーの同期を許可 20 フレーム/秒で複数のストリームからのデータ取得のため産卵行動回路の 4 x 4 ピクセルビニング (1.25 μ m/ピクセル) でも、シナプス領域の空間分解能。GCaMP5 と mCherry の蛍光信号 (図 4A, B) の同時取得を使用して、動物の動きとフォーカス (図 4D) の変化を補正するピクセル単位で比チャネルを生成します。ハイブリッドスパイクニューロン シナプス前末端はc. の elegans、多くの神経細胞体とシナプス前ハイブリッドスパイクニューロン Ca2 +の変更を明確に視覚化できることはできるだけ大きく。明視野観察赤外線カメラの大きな視野では、(図 4E) を記録中に追跡する手動でワームをことができます。それぞれの動物の行動における歩行 (図 4E) 卵リリースや変更も含めて明視野イメージングで明らかと細胞内 Ca2 +の変更を関連付けることができます。
ハイブリッドスパイクニューロン Ca2 +および速度の定量は、ワームで産卵行動に移行していく彼らの歩行を変更することを確認します。産卵のアクティブな状態 (図 5A) の前後中に、ワームの速度に差があります。これは雑音イメージングまたは追跡システムに固有の原因ではないです。1 産卵イベントにズームすると、我々 は強い観察 mCherry 蛍光は比較的産卵イベントの前に GCaMP5 蛍光 (ΔF/F) の変化 (図 5B) をそのまま。GCaMP5:mCherry 比 (ΔR/R) 変化が明らかに、HSN Ca2 +過渡 〜 4 s 前の卵子の放出 (図 5B)。外陰部の筋肉の収縮に一致する、ワーム歩行の明確な減速卵の両端を解放するに発生します。以前の結果は、HSNs によって支配されているが、コリン作動性 VC モーター ニューロンが活動のピークを表示する強い外陰部の筋肉収縮時と卵リリース8,,1027の間に示されています。私たちは VC ニューロンの光活性化ドライブに移動、すぐ減速も示している、VC ニューロンが外陰部の筋肉の収縮によって活性化することを示唆して、卵子の放出27 のフィードバックを受信するまで運動を遅くことにより.
イメージングおよび追跡システム説明産卵行動 (図 5C) の空間的組織の描出が可能です。以前に、ワームが直前のアクティブ状態32前方歩行の持続的な実行を入力して表示されます。ワームは、寒天の塊の中心に細菌の彼らの時間の大半を過ごします。エントリーがアクティブな状態の前にワームは不定期ハイブリッドスパイクニューロン Ca2 +トランジェントの外観と一致する食品から離れて移動します。ハイブリッドスパイクニューロンの活動は、いくつか密接に間隔をあけられたハイブリッドスパイクニューロン Ca2 +トランジェント産卵イベントを維持するとのバースト発火に遷移します。ワームしばしば好転、前方歩行を再開し、OP50 細菌近くスターティング ・ ポジションへ戻る途中の卵を産みます。我々 は、ワームが卵33,34をレイアウトする地元の O2 ・ CO2濃度の変化を影響可能性があることを想定しています。
図 1。線虫産卵回路活動と行動の高分解能イメージング手法を実装します。上部、側面から最終的なマウント。下、大規模なカバーガラスの底を通って見た最終的なマウント。矢印は、NGM 寒天チャンクと大規模な 24 mm × 60 mm coverslip 挟まれた OP50 細菌食品、線虫みみず、卵を示しています。この図の拡大版を表示するのにはここをクリックしてください。
図 2.広視野レシオ メトリック Ca2 +イメージングと逆落射蛍光顕微鏡での録画動作します。(A) ワームの位置と動作は明視野 (0.8 NA) x 20 経由でキャプチャ NGM チャンクを通じてハロゲン ランプから放射された赤外線 (750-790 nm) 光 (紫矢印) を使用して計画アポクロマート目的。ジョイスティックと電動ステージ コント ローラーは記録中にビューのフィールドでワームを維持するために使用されます。ステージ位置 (Δx, Δy) は、シリアル ポートで PC に送信されます。ワーム GCaMP5 と mCherry タンパク質 470 を使用して興奮している nm (青い矢印)、590 nm (黄色の矢印) 発光ダイオード (LED)。GCaMP5 を放出 (緑色の矢印) とマルチバンド ダイクロイック ミラーを通過する赤外光と共に mCherry (オレンジの矢印) 蛍光 (材料の表を参照してください)。80/20 ビームスプリッターは、赤外光に高感度 CMOS カメラ (紫色の矢印) のキャプチャの 0.63 x demagnifer を通る光の 20% を送信します。光の残りの 80% は、GCaMP5 を分離画像スプリッターに顕微鏡の側ポートを介して送信され、に mCherry 蛍光赤外対物レンズ ライトを除去しながら sCMOS カメラの半分を分けます。両方のカメラからのデータは、USB3 ケーブル経由で PC に転送されます。蛍光 sCMOS カメラ (青) からトリガー ポートを使用して送信します + 5 v TTL デジタル集録デバイス (DAQ)、赤外線明視野の CMOS カメラ、LED 照明システムをトリガーします。(B) トリガー 3 出力 TTL 信号はデジタル端子 #8 DAQ によって検出および USB 接続を介して PC に送信されます。これらのデジタル入力をトリガー、' どこ XY' X, Y ステージ各 GCaMP5/mCherry 蛍光/赤外線イメージ キャプチャのための位置を読み取り、盆栽ソフトウェア スクリプト (XY ステージ最終) からシリアル コマンド。この図の拡大版を表示するのにはここをクリックしてください。
図 3: 盆栽シリアル ステージ通信スクリプト XY ステージ最終のレイアウト。トップ (ピンク) DigitalInput ノードは、DAQ の #8 ピンに来る TTL トリガーを読み取ります。各肯定的な TTL 電圧 (緑)、DAQ タイムスタンプは、(青) とステージ コント ローラー、シリアル ・ ポート (グレー) (ピンク) ' が XY?' 文字列を書き込みます。(ピンク) SerialStringRead ノードは、X および Y 座標ステージ コント ローラーからの応答を読み取ります。この文字列はミクロンに変換し、分けステージ座標 X と Y。最後に、これら 4 つのストリームは、zip ノード (青) を使用して結合され、4 つの column.csv ファイルに書かれている: TTL 信号を受信 (範囲ノード、ピンク) のフレーム数、X と Y 座標、および後続の縦長の間隔 (通常 〜 50 ms とき20 Hz で記録)。この図の拡大版を表示するのにはここをクリックしてください。
図 4: ハイブリッドスパイクニューロン蛍光と産卵行動中に全体の動物の明視野の代表的な顕微鏡写真。(A-D)卵子放出直前に HSNs で GCaMP5 と mCherry の蛍光の同時レシオ イメージング。ハイブリッドスパイクニューロン シナプス前テルミニは、矢印で示されます。(C) GCaMP5 のマージと mCherry 蛍光。(D) 強度変調 GCaMP5:mCherry 比;高比率 (赤) は、高い細胞内 Ca2 +シナプス前末端を示します。(E) 直後に卵が敷かれている全体のワームの明視野イメージ。矢印は、卵のレイアウトから外陰部の前部と後部の半分を示しています。すべてのイメージのスケール バーは 50 μ m.この図の拡大版を表示するのにはここをクリックしてください。
図 5: 産卵行動中にハイブリッドスパイクニューロン Ca2 +と歩行速度の記録。(A) 細胞内 Ca2 +過渡応答 (ΔR/R; 赤) 瞬時ワーム速度 (μ m/s; ブルー) と共にの GCaMP5:mCherry 比の変化の痕跡。産卵イベントは、矢印で示されます。ワーム、GCaMP5:mCherry 蛍光比 (黒; ΔR/R) mCherry 蛍光 (赤色; ΔF/F) ハイブリッドスパイクニューロン GCaMP5 蛍光 (グリーン; ΔF/F) の (B) トレース速度卵子放出の瞬間の周り (青)。(C) 全体の 10 分録画中に産卵し、歩行動作の空間組織。ワーム トラックは、mCherry 蛍光記録から得られたハイブリッドスパイクニューロンの重心位置に追加された XY ステージ情報から得られました。ハイブリッドスパイクニューロン トランジェント (赤丸) のタイミング ・産卵イベント (黒矢印) と開始・記録 (緑と青のダイヤモンド) の終了が示されます。スケール バーは 1 mm ですこの図の拡大版を表示するにはここをクリックしてください。 。
遺伝子:
コドン最適化とイントロンの挿入を介して改善されました mCherry 式 (と最も利用可能な GCaMP 記者がない) ので注入 〜 強い Ca の GCaMP5 蛍光の同等レベルを確保するため GCaMP5 発現プラスミドの量 × 42 +トランジェント。Lin-15(n765ts)突然変異の救助産卵と他行動35に対する影響を最小にトランスジェニック動物の安易な復旧できます。遺伝子は、一貫した式と異なる動物25間の条件をイメージングできるように統合べきであります。37と温度に敏感な殖38の救助に抗生物質耐性36,を含む選択可能なマーカーは動作するはずですまた、しかし、非トランスジェニック動物が死んでいるので transgene の統合の確認とhomozygosity は目に見える表現型25を示すマーカーと比較してより困難です。通常歩行を中断し、フィットネス、 rol-6(dm)などを減少させる支配的なマーカーは、回避39をする必要があります。Lite 1イメージング画像23,40,41の中に青い光のエスケープの応答を減らすために突然変異体の背景は欠かせません。残留挙動と青い光42による生理的変化、 gur 3 lite 1に並列に動作する追加の突然変異がさらに最小限に抑えます。便利なgur 3、ライト 1、および林 15は、すべて Ca2 +イメージングと光遺伝学的実験のための新しい系統の構築を簡略化する必要があります、X 染色体の右半分に位置します。
露出時間が短いため、20 Hz で画像を収集 GCaMP5 と mCherry の信号は明るいである必要があります。騒々しい Ca2 +録音の最も可能性の高い説明は、弱い記者式による薄暗い蛍光です。プロモーターは、イメージング対象地域についての合理的に必要があります。ハイブリッドスパイクニューロン細胞体とシナプス外陰部の筋肉には体の中心にあるため頭と尾のnlp 3プロモーターから追加の式、通常は視野の外に追加のフィルターを使用して除外することができます、レシオ メトリック定量ソフトウェア。細胞内 Ca2 +の実際の変更に起因する GCaMP5 蛍光の変化を観察できるように、制御遺伝子 GCaMP5 の代わりに gfp は個別に準備する必要があります、26を分析します。異なる Ca2 +感受性、速度、および色と新しい Ca2 +記者は、イメージング ツールの選択を拡大しているが、Ca2 +を使用して各新しいレポーターを検証する必要があります-区別しない蛍光バリアント14 ,16。
メディア:
NGM イメージング プレートは、高品質の寒天と準備されるべき。低品質の寒天培地はオートクレーブ、残して小さな微粒子その散乱光イメージング、および背景の蛍光性の増加中に完全に分解しません。分子生物学グレード アガロースを代わりに使用することができますが、相当の板の硬さを維持するために追加金額を差し引きます。
その他取付方法の比較:
従来の産卵行動回路のイメージ活動は、アガロース パッドを接着剤で固定したワームを使用しています。これらの条件、回路活動と産卵行動の下で培養液浸透圧8,10,44,45の減少のない支持ではありません。最近の証拠は、自由に動物の行動に見られるように固定化の動物で認められた細胞活性の関係についての質問を上げる歩行状態によっていくつかのワームの動作が調節を示唆しています。我々 は最近、産卵回路活動が予期せず歩行26,27と段階的に示されています。同様に、仕切られた Ca2 + RIA 介在ニューロンのシグナルは感覚ニューロンと運動ニューロンを頭から活動を動き46を採餌中に統合されています。排便の動作は、動物廃棄物47を追放する前に採餌にその場所から離れて移動することができる運動の正確かつ陳腐な変化に伴われます。一緒に、固定化した動物から回路活動の簡単な録音は自由に動物の行動で得られたものから根本的に異なることが示唆されました。
観察の下に直接あることにもかかわらず標準 NGM プレートは、ワームの動作が似ています。卵が、孵化していくし、堆積した食品の少量により L1 幼虫大人 (データは示されていない) に成長します。大きな寒天チャンク サイズ合理的なガス交換と、脱水症状に抵抗するが、あまりにも多くの食品がバック グラウンド蛍光を増加します。このメソッド大人のための最高の作品、技法もイメージ L4 動物に使用できます。ただし、チャンクと、coverslip の間水の層の厚さはより小さい幼虫をクロールするのに苦労移動大人のきっかけに閉じ込められてしまうことが多い、です。
この土台の技術の制限は、身体の正確な領域に直接機械的又は化学的刺激は難しいです。パターン照明技術の最近の進歩は、頭または別の照明と微生物オプシンの尾表現の別の励起と midbody48,49GCaMP/mCherry 蛍光性の検出のため許可します。その結果、光遺伝学的アプローチを使用してこの問題を克服するために可能な場合があります。
他の Ca との比較2 +イメージングのアプローチ:
このメソッドは、細胞質 Ca2 +から単一の変更を記録するために、非常にうまく、細胞とそのシナプス領域を解決しました。頭の中のニューロンのリアルタイムの体積のイメージングは、細胞の識別と核質カルシウム50,,5152の変化を量的に細胞核の位置を使用して達成されている最近。核とシナプス Ca2 +との関係は不明のまま。我々 のデータは、セル相馬 (図 4) からシナプス前テルミニでハイブリッドスパイクニューロン細胞内 Ca2 +の最も顕著な変更が発生をお勧めします。HSN と VC ニューロンのシナプス前のテルミニは、シナプス後の外陰部の筋肉26に埋め込まれます。回転ディスクまたは光シート技術へ何らかの方法で細胞の特定の体細胞のカルシウムに頼ることがなく神経終末の Ca2 +シグナルを特定のセルに帰するのも Z のディメンションで十分な解像度があるかどうかは不明です。.ここでは、説明したテクニックを使用して各 10 分 2 チャンネル録音の 12,001 で 256 x 256 ピクセル 16 ビット TIFF イメージ、〜 4 GB。比と強度変調率チャンネルにファイル サイズの 2 倍 〜 8 GB。典型的な実験から 2 つの遺伝子型 (野生型および実験) の各 10 の動物を記録は約 150 GB のプライマリ データを生成し、収集し、分析する 20 h が必要です。Timepoint ごとの 10 の Z スライスと容積測定分析より多くのデータと分析時間、そのようなので、いくつかの研究を完了している理由を説明する大きさの順序を必要があります。
ハードウェア:
我々 は記録し、高性能のデュアル ・ プロセッサ ・ ワークステーションにイメージ シーケンスを分析 (例えば賭博) のグラフィック カード、64 GB の RAM、および高速ソリッドステート ドライブ (材料の表を参照してください)。データをネットワークの冗長アレイの独立したディスク (RAID) に格納され、オフサイトのデータ センターでクラウドにバックアップする必要があります。
金属のハロゲン化物、水銀ベース光源以上パルス蛍光励起用 Led を平行ハイパワーを使用してお勧めします。いくつかの市販のマルチカラー LED システムがあります。いくつかのこれらの LED システムは、高い初期費用が、彼ら長寿命 (> 20,000 h) することができます同時に 4 つ以上の異なる蛍光物質を励起、低レイテンシ (10-300 μ s スイッチのシリアル ・ インタ フェースの TTL を使用して制御を提供時間)。トリガーは、サンプルはデータが実際に収集されている場合に点灯のみ、保証します。我々 は通常、10 ms 露出 50 ms ごとに (義務率 20%) を使用します。これにより光毒性が減少し、以前に報告された43としてのイメージ キャプチャ中にモーションブラーします。
我々 はそのスピードと小さく、敏感なピクセルの大規模な配列 sCMOS カメラを使用します。EM CCD カメラより高価な代替が隣接するピクセルにこぼれるキャプチャされた光電子の '花' 効果があります。新しい裏面照射型 sCMOS カメラ コスト大幅削減で EM Ccd のような光線過敏症があります。関係なくどのセンサーを使用すると、GCaMP5、mCherry チャンネルを得なければならない同時に。ワームを移動でシーケンシャル取り込みが不十分な登録画像レシオ メトリック定量には不向きに します。分割した後、1 台のカメラにデュアル チャネル イメージングを実現できますチャンネル画像スプリッター (図 2) を使用してまたは 2 つの同一のカメラを使用しての。16 ビット画像のダイナミック レンジ 8 ビット画像の正確なレシオ メトリック quantitation のため勧めします。ワームの動作の明視野画像、私たちは JPEG 圧縮後大規模な 2 x 2 ビン分割 1,024 x 1,024 8 ビット イメージ シーケンスのキャプチャに 1 インチ 4.1 MP 近赤外 USB3 カメラを使用してキャプチャします。新しい顕微鏡モデルで利用できるより大きい視野により成虫のみわずかなケラレ (図 4E) で 0.63 倍縮小後 20 倍で可視化することができます。
標準 TTL の電圧信号を使用して照明とフレームのキャプチャを同期するをお勧めします。ために別のソフトウェア プログラムで潜在的な待ち時間は、ユーザーが TTL 出力の他のすべてのデバイスの駆動と蛍光カメラをトリガー出力を持つマスターとして構成をお勧めします。この方法では、Ca2 +測定ごとに明視野観察とステージの位置情報が収集されます。
スリットまたは共有の共施設で見つかった通常共鳴ポイント走査共焦点顕微鏡は、レシオ メトリック Ca2 +イメージング中に優れた性能をまた与えます。そのような器械は、明視野観察24と共に 2 つ以上の蛍光チャネルをキャプチャする使用できます。この場合、最大直径に対する共焦点ピンホールを開く必要があります、GCaMP5、mCherry、および赤外線明視野信号分離にスペクトル検出器を使用必要があります。これは厚いからライトのコレクションを最大化 (~ 20 μ m) アウト フォーカス蛍光の拒絶を許可しながらスライス。1 つの欠点は、小さい FOV とハードウェアおよびソフトウェアのカスタマイズのためのより多くの制限です。
ソフトウェア:
ほとんどのメーカーは出荷し、トリガー入力と出力の設定を含む独自のソフトウェアで自分のカメラと顕微鏡をインストールします。機能と録画中にこのソフトウェアの性能は変わります。追跡には、ワームを高速移動することが困難になることができます、ので、滑らか、20 Hz で安定したニーズを記録中に表示をイメージします。パフォーマンスを改善するには、動画像一時的に保存できます RAM に実験の終了時に保存の行動に関連するサブセットを持つ。これらの 2 ch イメージ シーケンス ファイルは、開いている画像フローサイトメトリー標準書式指定 (.ics) レシオ メトリック定量ソフトウェアにインポートするために変換できます。異なるインストールが 4 GB を超える TIFF イメージ シーケンスを保存することがありますが、青梅 TIFF は最近オープン ソース画像形式です。
定量パイプラインの重要な機能は、比チャネルをクリックし、mCherry 蛍光を使用して興味のセルを検索する公平な画像分割手順の世代です。各検出オブジェクトから、オブジェクトのサイズ、XY 重心位置、および最小値を意味、(比チャネルを含む) 各チャネルの最大蛍光強度の値が計算されます。一緒に、これらの値は、細胞内 Ca2 +記録に各 timepoint での変化を量的に使用されます。各 timepoint オブジェクトの測定し、以降の解析用 a.csv ファイルとしてエクスポートされます。
ここで説明したプロトコルの主要な制限は、ソフトウェア製品のパッチワークをさまざまな形でのデータの移動に依存です。追加の刺激はオープン ソースと無料、他が閉じている、高価、不均等更新がソフトウェアの一部です。主要な改善は、使用またはパフォーマンスと使いやすさ - 集録から解析への同じようなレベルを提供するソフトウェア (理想的にオープン ソース) の 1 つの作品を開発するでしょう。上述したように、レシオ メトリック解析はファイル サイズと実験を完了に必要な時間の両方を 2 倍します。盆栽と、スループットが大幅に改善し、リアルタイムの画像や他のデータ ストリームを収集し、分析を許可するようにユーザーにカスタマイズ可能なフレームワークに統合できるカメラ ドライバーの世代。
今後の展望:
赤外線明るいまたは暗いフィールド録音で検出ワーム重心の追跡する必要があります処理ステージ位置の閉ループ調整を提供し、自動ノード追加のイメージは、我々 は通常手動でワームの動きを追跡、追跡 (図 3とデータは表示されません)。この方法で得られる蛍光の録音の大半は暗く、生物学的に興味深いデータを欠いています。関連するオブジェクトに画像をトリミング加工上センサーまたはリアルタイムの買収後イメージだろう増加の空間分解能を可能にして追加 Z スライスごとに収集される場合は特に、データ解析パイプラインを促進timepoint 回路のすべての前及びシナプス後細胞内の活動を可視化します。
著者は、競合する利益がないことを宣言します。
この作品は、KMC (R01 NS086932) に組織プラスミノーゲンアクテベータからの助成金によって賄われていた。LMN は日の出 IMSD プログラム (R25 GM076419) からの助成金によって支えられました。本研究で用いた系統線虫の遺伝学センター研究基盤プログラム (P40 OD010440) の NIH のオフィスによって資金が供給されます。有用な議論、ジェームズ ・ ベーカーとメイソン ・ クラインに感謝します。
Name | Company | Catalog Number | Comments |
C. elegans growth, cultivation, and mounting | |||
Escherichia coli bacterial strain, OP50 | Caenorhabditis Genetic Center | OP50 | Food for C. elegans. Uracil auxotroph. E. coli B. Biosafety Level 1 |
HSN GCaMP5+mCherry worm strain | Caenorhabditis Genetic Center | LX2004 | Integrated transgene using nlp-3 promoter to drive GCaMP5 and mCherry expression in HSN. Full genotype: vsIs183 [nlp-3p::GCaMP5::nlp-3 3'UTR + nlp-3p::mCherry::nlp-3 3'UTR + lin-15(+)], lite-1(ce314), lin-15(n765ts) X |
lite-1(ce314), lin-15(n765ts) mutant strain for transgene preparation | author | LX1832 | Strain for recovery of high-copy transgenes after microinjection with pL15EK lin-15(n765ts) rescue plasmid. Also bears the linked lite-1(ce314) mutation which reduces blue-light sensitivity. Available from author by request |
pL15EK lin-15a/b genomic rescue plasmid | author | pL15EK | Rescue plasmid for recovery of transgenic animals after injection into LX1832 lite-1(ce314), lin-15(n765ts) X strain. Available from author by request |
pKMC299 plasmid | author | pKMC299 | Plasmid for expression of mCherry in the HSNs from the nlp-3 promoter. Has nlp-3 3' untranslated region |
pKMC300 plasmid | author | pKMC300 | Plasmid for expression of GCaMP5 in the HSNs from the nlp-3 promoter. Has nlp-3 3' untranslated region |
Potassium Phosphate Monobasic | Sigma | P8281 | For preparation of NGM plates |
Potassium Phosphate Dibasic | Sigma | P5655 | For preparation of NGM plates |
Magnesium Sulfate Heptahydrate | Amresco | 0662 | For preparation of NGM plates |
Calcium Chloride Dihydrate | Alfa Aesar | 12312 | For preparation of NGM plates |
Peptone | Becton Dickinson | 211820 | For preparation of NGM plates |
Sodium Chloride | Amresco | 0241 | For preparation of NGM plates |
Cholesterol | Alfa Aesar | A11470 | For preparation of NGM plates |
Agar, Bacteriological Type A, Ultrapure | Affymetrix | 10906 | For preparation of NGM plates |
60 mm Petri dishes | VWR | 25384-164 | For preparation of NGM plates |
24 x 60 mm micro cover glasses, #1.5 | VWR | 48393-251 | Cover glass through which worms are imaged |
22 x 22 mm micro cover glasses, #1 | VWR | 48366-067 | Cover glass that covers the top of the agar chunk |
Stereomicroscope with transmitted light base | Leica | M50 | Dissecting microscope for worm strain maintenance, staging, and mounting |
Platinum iridium wire, (80:20), 0.2mm | ALFA AESAR | AA39526-BW | For worm transfer |
Calcium imaging microscope | |||
Anti-vibration air table | TMC | 63-544 | Micro-g' Lab Table 30" x 48" anti-vibration table with 4" CleanTop M6 on 25mm top |
Inverted compound microscope | Zeiss | 431007-9902-000 | Axio Observer.Z1 inverted microscope |
Sideport L80/R100 (3 position) | Zeiss | 425165-0000-000 | To divert 20% of output to brightfield (CMOS) camera, 80% to fluorescence (sCMOS) camera |
Tilt Back Illumination Carrier | Zeiss | 423920-0000-000 | For infrared/behavior imaging |
Lamphousing 12V/100W w/ Collector | Zeiss | 423000-9901-000 | For infrared/behavior imaging |
Halogen lamp 12V/100W | Zeiss | 380059-1660-000 | For infrared/behavior imaging. White-light LEDs do not emit significant infrared light, so they will not allow brightfield imaging after the infrared bandpass filter |
32 mm Infrared bandpass filter (750-790 nm) for Halogen lamp | Zeiss | 447958-9000-000 | BP 750-790; DMR 32mm, for infrared illumination for brightfield and behavior |
6-filter Condenser Turret (LD 0.55 H/DIC/Ph), Motorized | Zeiss | 424244-0000-000 | For infrared/behavior imaging |
Condenser & Shutter | Zeiss | 423921-0000-000 | For infrared/behavior imaging |
Binocular eyepiece with phototube for infrared CMOS camera | Zeiss | 425536-0000-000 | For infrared/behavior imaging |
Eyepiece 10x, 23mm | Zeiss | 444036-9000-000 | For worm localization on the agar chunk |
C-Mount Adapter 2/3" 0.63x demagnifier | Zeiss | 426113-0000-000 | Mount for infrared CMOS camera |
CMOS camera for infrared brightfield and behavior (1" sensor) | FLIR (formerly Point Grey Research) | GS3-U3-41C6NIR-C | Camera for brightfield imaging |
USB 3.0 Host Controller Card | FLIR (formerly Point Grey Research) | ACC-01-1202 | Fresco FL1100, 4 Ports |
8 pins, 1m GPIO Cable, Hirose HR25 Circular Connector | FLIR (formerly Point Grey Research) | ACC-01-3000 | Cable for TTL triggering. The green wire connects to GPIO3 / Pin 4 and the brown wire connects to Ground / Pin 5 |
Plan-Apochromat 20x/0.8 WD=0.55 M27 | Zeiss | 420650-9901-000 | Best combination of magnification, numerical aperture, and working distance |
6-cube Reflector Turret, Motorized | Zeiss | 424947-0000-000 | For fluorescence imaging |
Fluorescence Light Train, Motorized | Zeiss | 423607-0000-000 | For fluorescence imaging |
Fluorescence Shutter | Zeiss | 423625-0000-000 | For fluorescence imaging |
GFP and mCherry dual excitation and emission filter cube (for microscope) | Zeiss | 489062-9901-000 | FL Filter Set 62 HE BFP+GFP+HcRed for fluorescence imaging |
LED illumination system | Zeiss | 423052-9501-000 | Triggerable Colibri.2 LED system for fluorescent illumination |
GFP LED module (470 nm) | Zeiss | 423052-9052-000 | Colibri.2 LED for GFP fluorescence excitation |
mCherry LED module (590 nm) | Zeiss | 423052-9082-000 | Colibri.2 LED for mCherry fluorescence excitation |
Iris stop slider for incident-light equipment | Zeiss | 000000-1062-360 | Field aperture iris to limit LED illumination to the camera field of view |
C-Mount Adapter 1" 1.0x | Zeiss | 426114-0000-000 | Adapter for image-splitter and sCMOS fluorescence camera |
Image splitter | Hamamatsu | A12801-01 | Gemini W-View, other image splitters may be used, but they may not be optimized for the large sensor size of the sCMOS cameras |
GFP / mCherry dichroic mirror (image splitter) | Semrock | Di02-R594-25x36 | Splitting GCaMP5 from mCherry and infrared signals |
GFP emission filter (image splitter) | Semrock | FF01-525/30-25 | Capturing GCaMP5 fluorescence |
mCherry/ emission filter (image splitter) | Semrock | FF01-647/57-25 | This filter is necessary to exclude the infrared light used for brightfield imaging |
sCMOS camera for fluorescence (1" sensor) | Hamamatsu | A12802-01 / C11440-22CU | Orca FLASH 4.0 V2. Newer models allow for separate image acquisition settings on separate halves of the sensor, allowing acquisition of two-channel images in combination with an image splitter |
Motorized XY Stage | Märzhäuser | SCAN IM 130 x 100 | Stage movement; the XY resolution of this stage is 0.2µm per step |
XY Stage controller with joystick | LUDL | MAC6000, XY joystick | Manual tracking of worms. MAC6000 controller should be connected to the PC through the serial (RS-232) port configured to 115200 baud |
Digital Acquisition board (DAQ) | Arduino | Uno | Receiving TTL triggers from sCMOS camera. The Uno should be loaded with the standard Firmata package, and the computer USB port configured to 57600 baud |
BNC Male to BNC Male Cable - 6 ft | Hosa Technology | HOBB6 | BNC connectors for TTL triggering |
Gold-Plated BNC Male to SMA male coaxial cable (8.8") | uxcell | 608641773651 | To connect the fluorescence camera trigger outputs |
BNC turn head adapter | Hantek | RRBNCTH21 | BNC to Banana Plug Adapter (4mm) |
BNC female to female connector | Diageng | 20130530009 | Female to female BNC adapter to connect the BNC output from the camera to the Banana Plug |
Solderless flexible breadboard jumper wires | Z&T | GK1212827 | To connect the BNC trigger outputs to the Arduiono DAQ. Male to male. |
High performace workstation | HP | Z820 | Windows 7, 64GB RAM, Dual Xeon processor, solid state C: drive, serial (RS-232) port, multiple PCIe3 slots for ethernet connectivity, USB 3.0 cards, and additional solid state drives |
M.2 Solid state drive | Samsung | MZ-V5P512BW | High-speed streaming and analysis of image data |
M.2 Solid state drive adapter for workstations | Lycom | DT-120 | M.2 to PCIe 3.0 4-lane adapter |
Network attached storage | Synology | DS-2415+ | Imaging data storage and analysis |
Hard disk drives | Western Digital | WD80EFZX | RED 8 TB, 5400 RPM Class SATA 6 Gb/s 128MB Cache 3.5 Inch. Storage of imaging data (10 drives + 2 drive redundancy) |
Software | |||
Fluorescence Acquisition | Hamamatsu | HCImage DIA | Recording of two channel (GCaMP5 and mCherry) fluorescence image sequences at 20 fps |
Brightfield Acquisition | FLIR (formerly Point Grey Research) | Flycapture | Recording of brightfield JPEG image sequences |
Stage Serial Port Reader | Bonsai | https://bitbucket.org/horizongir/bonsai | Facilitates tracking of worms during behavior |
LED controller software | Zeiss | Micro Toolbox Test 2011 | To set up the intensity and trigger inputs for the different LEDs in the Colibri.2 unit |
ImageJ | NIH | https://imagej.net/Fiji/Downloads | Simple review of image sequences and formatting changes for import into Ratiometric Quantitation software |
Excel | Microsoft | 2002984-001-000001 | For generating subsets of comma-separated value data from Volocity for MATLAB analysis |
Peak Finding | MATLAB | R2017a | Script used for Ratio peak feature calculations |
Ratiometric Quantitation | Perkin Elmer | Volocity 6.3 | Facilitates calculation of ratiometric image channels, image segmentation for object finding, and ratio measurement of found objects |
Scripts | |||
XY-stage-final.bonsai | Bonsai | TTL-triggered DAQ and stage position serial port reader | Records X and Y stage position (in microns) when the attached Arduino receives a positive TTL signal from sCMOS camera during frame exposure. Script writes a .csv file with four columns: frame number, X position (microns), Y position (microns), and the time elapsed between frames (typically ~50 msec when recording at 20 fps). X and Y stage position from this output (columns 2 and 3, respectively) are added to the X and Y centroid positions from the AnalyzeGCaMP_2017.m MATLAB script (columns 4 and 5, respectively), to give the final X and Y position of the fluorescent object for the recording. |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved