Method Article
この記事では、吸収性の microbiopsy テクニックを実行する方法と、皮膚や血液のシンプルで同時サンプリングのための RNA の抽出のサンプルを使用して、低侵襲な方法を示しています。
従来の皮膚生検は、化粧品に敏感な部分やその侵襲による小児のアプリケーションを含む臨床研究を制限します。ここでは、皮膚や血液の混合物の低侵襲のサンプリングのため吸収性マイクロニードル ベースのデバイス、吸収性の microbiopsy を使用するためのプロトコルについて述べる。私たちの目標は、臨床研究、皮膚疾患と臨床研究参加者のリスクを減らすのためのバイオ マーカーの確立で急速な進歩を促進するためにです。従来皮膚生検する方法と対照をなして吸収 microbiopsy 数秒以内に実行することができます、そのシンプルなデザインのための集中的な訓練を必要としません。本報告では読み込みとボランティア上のアプリケーションを含む、吸収性の microbiopsy の使用をについて説明します。その後、吸収のサンプルからの RNA を隔離する方法を示します。最後に、我々 は、定量的逆転写 PCR (RT qPCR) 血液 (CD3EとCD19) と皮 (KRT14やTYR) の mRNA 発現量を定量化するための使用を示します。述べる方法は、棚キットおよび試薬を利用します。このプロトコルでは、皮膚と同じ吸収 microbiopsy マトリックス内の血の同時サンプリング低侵襲アプローチを提供しています。我々 は、皮膚科学研究へのこのアプローチを支持する人間の倫理委員会、医師やボランティアを発見しました。
皮膚生検は皮膚をサンプリングするため皮膚科で最も重要なテクニックの 1 つと皮膚病の病理組織学的評価を通じてその後診断です。生検法には、ブレードやパンチ生検を使用して試験1の患者の皮膚に疑わしい病変を削除する専門医療機関にはが含まれます。テクニックは効果的な非常に侵略的、終点は通常分子生物学技術2,3を含む臨床研究の制限します。皮膚疾患の分子生物学的解析には、病理組織学的解析ができないし、こうして促進薬剤探索と疾患診断4,5非常に特定の生物学的情報を提供する可能性があります。その上、最も分子技術のサンプル需要は比較的小さい動物の使用の削減につながる可能性がありますと複製の大きい数を許可します。したがって、ある明確な臨床研究における分子解析を可能にし参加者のリスクを下げる方法の必要があります。
フィールドでそのような必要性に対処するため当社グループは、新規マイクロニードル ベースの診断プラットフォーム、シンプルで低侵襲の方法6の血液と混合肌の小さな量のコレクションを可能にする吸収性の microbiopsy を開発しました。この文書の目的は、臨床研究における RNA の抽出による分子の分析を容易にするツールをサンプリングとして吸水性 microbiopsy を記述するためです。
以前は、microbiopsy、皮膚組織7の小さな断片を抽出する 3 層鋼プレート デザイン製マイクロニードルから成っている皮膚 microbiopsy の最初のバージョンを説明しました。このデバイスの目新しさは、効率的な組織抽出3を許可するマイクロニードルから複数の接触ポイントから来ています。対照的に、円形皮膚生検は 1 つだけの接触ポイントを提供し、単にいくつかのケースで任意のサンプルをキャプチャすることがなく肌を涙します。皮膚 microbiopsy に基づいて、我々 は最近血液と皮膚機能のサンプリングを持つ吸水性 microbiopsy を開発しました。デバイスは、最近の疫学的研究6で資源に乏しい地域で使用可能であること示されています。
その単純な設計のため吸水性 microbiopsy は、ほんの数秒で実行でき、広範なトレーニングを必要としません。また、局所麻酔薬が必要でない、アプリケーション サイトは瘢痕を発生しません。存在のプロトコルは、分子生物学的解析の対象となる皮膚のデータを取得するトレーニング関連のサンプリングなしの研究者や医療従事者をできます。我々 は将来的に皮膚研究のルーチンになる特定のデバイスを期待します。
Microbiopsy は、分子診断技術6,8,9,10, ヒトパピ ローマ ウイルス DNA の検出、このプロトコルなどを含んだ他の皮膚病の研究で報告されているが吸収性の microbiopsy のサンプルの抽出と処理技術の詳細を説明する最初のです。さらに、これは皮膚と microbiopsy サンプルの血液細胞の相対的な遺伝子発現プロファイルを記述する最初のレポートです。
研究は、大学の南オーストラリア人間倫理委員会 (200607) とクイーンズランド大学人間研究倫理委員会 (HREC-13-QPAH-551 と UQ2013001551) 地下鉄南人間研究倫理委員会によって承認されました。
1. 吸水性 Microbiopsy の作製
2. 吸水性 Microbiopsy とサンプリング
3. RNA の抽出
注: microbiopsied のサンプルから RNA の絶縁に最適なメーカーのプロトコルから RNA 抽出手順が変更されました。特に指定しない限り、すべての試薬および RNA の抽出で使用される列はキットに含まれます。
4. cDNA 合成
5. qPCR 反応とデータ解析
注: qPCR 反応のためのプライマーは、NCBI プライマー爆発 (www.ncbi.nlm.nih.gov/tools/primer-blast/) を使用してゲノム DNA の増幅を避けるためにイントロン境界にまたがるよう設計されました。本研究で使用される参照の遺伝子はRPLP0 (詳細についての議論を参照してください)。
皮膚 microbiopsy のマイクロニードルが皮膚約 500 μ m の深い7を侵入することを以前報告した.皮膚 microbiopsy のマイクロニードル デザインは高吸水性 microbiopsy (図 2 a) の 1 つに似ています。血液吸収のための中間の吸収層で構成され吸収性 microbiopsy 中肌 microbiopsy には皮膚組織の機械的キャプチャ用のチャネルが含まれています。吸音層の使用はまた、マイクロニードル寸法に若干の違いにつながった (吸収: 1.50 × 0.50 × 0.21 mm 対皮膚: 1.50 × 0.50 × 0.15 mm)。
図 2 bを示していますアプリケーション サイト 5 分吸収後、肌 microbiopsies が男性ボランティアの左掌腕に適用されました。2 つのマイクロニードル デザイン間の類似性、両方のデバイスからアプリケーション サイトでした、軽微な紅斑と対等であります。両方のアプリケーションのサイトは、左の傷と 48 時間後の背後にある顕著でした。これは、この低侵襲デバイスが画面の複数アプリケーション サイトを支援するまたは定期的に実行する可能性を持っているという仮説をサポートします。
図 2 cボランティア男性の掌側のアームに適用された後吸水性 microbiopsy の吸収層の代表的な画像を表示します。図のように、皮膚のいくつかの小さな作品は、マイクロニードルの先端近く捕獲され、いくつかの血液をろ紙におこった。これはデバイスが皮膚を浸透し、皮膚と同じ吸収 microbiopsy マトリックス内で同時に血を捕獲したことを示します。図 2 dはサンプリングした後の皮膚 microbiopsy、比較のため microbiopsy の前の世代。皮膚 microbiopsy のチャネルが皮膚の小片を捕獲したが、マイクロニードルの血の量は吸収性の microbiopsy に比べて小さかった。両方のアプリケーションのサイトが 48 時間以内に顕著でした。実験では、吸収性の microbiopsy は 10 の保持時間を適用した後アプリケーション、皮膚の中 microbiopsy すぐ後にリリースされたデザインで差を適用します。
吸水性 microbiopsy の 2 つのグループがアプリケーション プロトコルに基づくこの実験に関与していた図 3 aのように、: '即時リリース' と 10年の保持 '。'即時リリース' グループのデバイスは、アプリケーションの直後にアプリケーション サイトから削除されているデバイスと同じ皮膚の元の microbiopsy プロトコルを使用して適用しました。10 の保持するため ' デバイスは、10 は、申請後の場所で開催されたグループ、サンプルのコレクションを改善するために s。吸水性 microbiopsy の 2 つのグループは、アプリケーション アプローチ可能性がありますサンプル量に与える影響を実証するセットアップされました。10 の保持時間は、アプリケーションの時間回復可能なサンプル量に影響を与えることを示す臨床的に妥当な時間として選ばれました。
RNA の量回復 2 つの吸収 microbiopsy グループから 10 の開催のための即時リリース' 0.33 ± 0.39 ng と 1.43 ± 0.88 ng をいた ' (図 3 a, n = 20)、余分な保持時間と 4 倍の増加を示唆しています。これは 10 の保持時間と吸収装置を適用するより多くの RNA 抽出の結果であることを示します。吸音層 (図 3 c) に増加した血液サンプルの存在により違いがあります。確かに、'即時リリース' グループ (図 3 b) が 10年の保持と比較して吸音層と血のような量を収集するために失敗しました ' グループ (図 3 c)。また、最もすぐにリリースされた microbiopsies が x 軸、または否定的なイベントをされた RNA の非常に低い金額を表示示唆に近かったに注意する必要があります。したがって、結果は保持時間は吸収層で吸収する血のための時間がかかることがあります、デバイスの性能に影響を与えるをだろうという仮説を検証しました。
血と皮膚サンプリング デバイスが設計されているため、qPCR は比較のために両方のデバイスのための皮膚や血液バイオ マーカーの発現を検出する使用されました。メラノサイトとKRT14実行可能な表皮のケラチノ サイト マーカーとしてのバイオ マーカーとしてチロシナーゼ、 TYRを使いました。皮膚 microbiopsy サンプルは、比較のための実験に含まれていた。図 4で示すとおり、皮膚や吸収性 microbiopsies、デザインの違いにより異なって適用されていたにもかかわらず式レベル両方の皮膚マーカー TYR KRT14によって示されるように両方のデバイスと同等のデータ。白血球細胞のバイオ マーカー (CD3E、 CD19、B 細胞と T 細胞) 皮膚 microbiopsy サンプルのよりも吸収性の microbiopsy サンプルでより普及していることがわかった。この結果, 吸収 microbiopsy は血のコレクションでより良い実行が、まだ肌の microbiopsy と比較して皮膚をキャプチャするための能力を維持 (n = 5)。
図 1。吸水性 microbiopsy の作製します。(a) 3 層マイクロニードル。(b) デバイスの各地。(c) 組み立てられた吸収の microbiopsy。この図の拡大版を表示するのにはここをクリックしてください。
図 2。吸水性 microbiopsy は男性ボランティアの左掌腕に傷跡を残さず、皮膚や血液のサンプルを同時にキャプチャすることができた。(a) 吸収、皮膚 microbiopsies のマイクロニードルを比較。(b) アプリケーション アプリケーション後吸収、皮膚の microbiopsies 5 分で左を地します。(c、d)塗布後の吸収と皮膚 microbiopsies のニードル。この図の拡大版を表示するのにはここをクリックしてください。
図 3。吸水性 microbiopsy キャプチャより多くの血と RNA サンプル 10 s. の適用(デバイスをすぐに解放よりも RNA の高い量で起因した a) 10 秒後アプリケーション保持時間 (n = 20)。誤差は平均から標準偏差を表す (* * *p< 0.0001)。(b, c)アプリケーションの即時リリース' と 10年の保持後吸収性の microbiopsies の代表的な写真 ' のアプローチ。この図の拡大版を表示するのにはここをクリックしてください。
図 4。皮膚と吸収性 microbiopsies の mRNA 発現レベルの比較 (n = 5)。参照の遺伝子RPLP0の遺伝子発現を正常化していた。誤差は平均から標準偏差を表す (*p< 0.05)。この図の拡大版を表示するのにはここをクリックしてください。
これらの結果を示す分子特性評価のための皮膚や血液の混合物のシンプルで低侵襲のサンプリングのためのツールとして吸水性 microbiopsy が使えます。私達のプロトコルに従ってデバイス アプリケーションは RNA 量別のアプリケーション プロトコル (図 3) と回復の違いが示すように、信頼性の高い結果を得るために不可欠です。サンプルが抽出される RNA の抽出のためのステップの処理以降のサンプル高確立したプロトコル15,16に似ていますその上吸収 microbiopsy に変更される RNA の抽出の最初の手順から別のキーの変更下流のアプリケーションの結果を改善するために水の RNase フリーの使用であります。また、この研究で使用される参照の遺伝子がRPLP0であることを言及する価値があります。RPLP0関数が別の細胞と組織の種類17の知られているは、非黒色腫皮膚癌および前癌病変18で使用するための適切な参照の遺伝子として報告されています。
デバイスの主要な限界の 1 つは、時間がかかり、潜在的、特に RNA のような敏感なサンプル サンプルの損失のチャンスを増加するデバイスから microbiopsy の除去です。それにもかかわらず、予冷却 2 mL 遠心チューブ、ドライアイスなどの滅菌処理のツールによる問題を克服できます。
吸収性の microbiopsy の使用は簡単、集中的な訓練を必要としません。従来の生検は、microbiopsy があれば RT qPCR などの確立された分子診断技術と分子特性は必要ではありません。さらに定量化し吸水性 microbiopsy のサンプリング能力を発揮、人間の皮膚組織からの RNA 抽出を含んだ前の文献を調べた。典型的な 3.0 または 4.0 mm の皮膚から、生検をパンチ、3 つの研究は、50 〜 200 抽出した RNA 量を報告している皮膚組織19,20,21mg 当たり ng。1.43 と比較する平均 (図 3)、サンプリングされた皮膚組織の重量で吸収性の microbiopsy から回収された RNA の ng は 0.29 115 範囲と予想皮膚パンチ生検研究から同じ RNA の組織比率に基づいて μ g。
問題の一部は簡単に解決することができますが、このプロトコルは潜在的な落とし穴は、ないわけです。たとえば、RNA 抽出データは、10 の保持時間 (図 3) ともかなりの変化を提案しました。問題を解決するには、1 つの潜在的なソリューションにはアプリケーション プロトコルの最適化が含まれます。力などのパラメーターは、皮膚に適用し、テストおよびサンプル抽出の変動を減らすために最適化時間を保持している必要があります。他の潜在的な問題は、サンプルの整合性と回復に影響を与える可能性がありますデバイスから microbiopsy の除去です。RNA の抽出の microbiopsy を削除することは効果的な方法が、全体の手順は面倒です, とサンプルは、プロセスの汚染にさらされるかもしれない。したがって、サンプル処理プロトコルの変更はサンプルの整合性を確保し、サンプルの損失を防ぐためにすることが望ましい。
上記の 2 つの問題が処理されると、デバイスは臨床研究のための標準的なツールになることが期待されます。デバイスは、同時に皮膚や血液のサンプルをキャプチャし、このする必要があります考慮する遺伝子発現データを分析する際に注意することが重要です。結論としては、このプロトコルは結合された皮膚と採血と相対的な遺伝子発現プロファイルの処理以降のサンプルのための簡単かつ低侵襲ツールとしての吸水性 microbiopsy の実行に関する詳細をについて説明します。
利害の対立が宣言されていません。
NHMRC 奨学金 APP1109749 と APP1111216、クイーンズランド大学百周年記念奨学金、国際大学院研究奨学金を認識したいと思います。
Name | Company | Catalog Number | Comments |
Absorbent microbiopsy fabrication and sampling | |||
Absorbent Microbiopsy | Trajan Scientific and Medical | N/A | https://www.trajanscimed.com/ |
Whatman filter paper, Grade 1 | Sigma Aldrich | WHA1001325 | N/A |
RNA extraction | |||
PicoPure RNA Isolation Kit | ThermoFisher | KIT0214 | Including all buffer soltuions described in protocol |
UltraPure DNase/RNase-Free Distilled Water | ThermoFisher | 10977015 | Improving RNA quality in RNA elution step |
2.0 mL Microcentrifuge Tube, Sterile | Thomas Scientific | 1226S74 | N/A |
Microcentrifuge 5415R | Eppendorf | Z605212 | N/A |
cDNA synthesis | |||
SensiFAST cDNA Synthesis Kit | Bioline | BIO-65053 | N/A |
CFX96 Touch Real-Time PCR Detection System | Bio-Rad | 1855196 | N/A |
qPCR reaction and data analysis | |||
SensiFAST SYBR Lo-ROX Kit | Bioline | BIO-94005 | Including reagents described in qPCR reaction steps |
MicroAmp Optical Adhesive Film | ThermoFisher Scinentific | 4311971 | N/A |
MicroAmp Optical 384-Well Reaction Plate | ThermoFisher Scinentific | 4343370 | N/A |
QuantStudio 6 Flex Real-Time PCR System | ThermoFisher Scinentific | 4485694 | N/A |
GraphPad Prism (v6.04) | GraphPad | N/A; Windows version | Plotting and statistical analysis in qPCR data analysis steps |
PCR primers | |||
RPLP0 F | Sigma Aldrich | N/A | ATC AAC GGG TAC AAA CGA GTC |
RPLP0 R | Sigma Aldrich | N/A | CAG ATG GAT CAG CCA AGA AGG |
TYR F | Sigma Aldrich | N/A | TCA GCA CCC CAC AAA TCC TAA |
TYR R | Sigma Aldrich | N/A | AAT CGG CTA CAG ACA ATC TGC |
KRT14 F | Sigma Aldrich | N/A | CCT CCT CCC AGT TCT CCT |
KRT14 R | Sigma Aldrich | N/A | ACA CCA CCT TGC CAT CG |
CD3E F | Sigma Aldrich | N/A | CAA AGG GGA CAA AAC AAG GAG |
CD3E R | Sigma Aldrich | N/A | GTT CTC CAG AGG GTC AGA TG |
CD19 F | Sigma Aldrich | N/A | TTC TGC CTG TGT TCC CTT G |
CD19 R | Sigma Aldrich | N/A | GCG TCA CTT TGA AGA ATC TCC T |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved