Method Article
ジカウイルスの最近の流行は、ワクチンや治療戦略を開発するための逆遺伝的アプローチを確立することの重要性を強調しています。ここでは、ヒトサイトメガロウイルスの制御下で細菌人工染色体に組み立てられた全長cDNAクローンから感染性組換キンジカウイルスを早期に促進するプロトコルについて説明する。
ジカウイルス(ZIKV)感染と神経性合併症との関連、および承認されたワクチンおよび/または抗ウイルス薬の欠如は、ZIKV生物学の研究と治療および/または予防的アプローチの開発。しかし、他のフラビウイルスと同様に、ZIKV全長感染性cDNAクローンの生成は、細菌の増幅中にウイルス配列の毒性のために妨げられてきた。この問題を克服するために、細菌人工染色体(BAC)の使用に基づく非伝統的なアプローチを開発しました。このアプローチを使用して、ZIKV株リオグランデドノルテナタール(ZIKV-RGN)の全長cDNAコピーは、4つの合成DNA断片から生成され、ヒトサイトメガロウイルス(CMV)の制御下で単一コピーpBeloBAC11プラスミドに組み立てられます。即時早期プロモーター。組み立てられたBAC cDNAクローンは細菌の伝播中に安定であり、感染性組換え(r)ZIKVはBAC cDNAクローンのトランスフェクション後にベロ細胞で回収される。ここで説明するプロトコルは、ZIKVおよび他の陽性鎖RNAウイルス、特に細菌の間に安定性の問題を有する大きなゲノムを持つものを含むフラビウイルスの感染性クローンの生成のための強力な技術を提供する伝播.
ZIKVは、現在世界的な公衆衛生上の緊急事態1を構成するフラビリダ科内のフラビウイルス属の蚊媒介メンバーである。他のフラビウイルスと同様に、ZIKVは、約10.8kb(図1)2の正の感覚、一本鎖RNA分子を含むイコサヘドラ状構造を有する封入されたRNAウイルスである。ウイルスゲノムは、ウイルスおよび細胞プロテアーゼによって処理される約3,423アミノ酸の大きな多タンパク質を、3つの構造タンパク質(カプシド[C]、膜/膜前膜[prM/M]、およびエンベロープ[E])の形成に関与する3つの構造タンパク質にコードする。ゲノム複製、ウイルス組み立て、宿主免疫応答の回避に関与する7つの非構造(NS2A、NS2B、NS3、NS4A、NS4B、NS5)のウイルス粒子および7個の非構造(NS)タンパク質(図1)3。
歴史的に、ZIKV感染は軽度の熱性疾患4、5と関連している。しかし、南米、中米、南太平洋、カリブ海諸国におけるZIKV感染の爆発的な最近のパンデミック、およびギラン・バレ症候群の発生との関連小頭症9、10、11、12、13は、歴史的認識を変更し、重要なヒト病原体としてのZIKVの関連性を増強した。この意味で、感染性cDNAクローンなどの分子ツールの開発は、ウイルス病因の研究と遺伝的に定義されたワクチンの開発、およびZIKV感染の治療のための抗ウイルス薬の同定を容易にする。他のフラビウイルスについて説明したように、ZIKV感染性クローンの生成は、ウイルスゲノム14における不可解な細菌プロモーターの存在により困難であり、その伝播中に有毒なウイルスタンパク質の漏出発現を可能にする。標準的な高コピー数プラスミド15、16、17を使用する細菌中のcDNAクローン。この毒性の問題を克服するために、いくつかの非伝統的なアプローチは、過去2年間で正常に実装されています18.これらには、低コピー数プラスミド19、20、有毒領域21、22、23を破壊するイントロンの挿入、cDNA断片のインビトロライゲーションの使用が含まれる。24歳,25, ウイルスゲノムに存在する不可解な細菌プロモーターの突然変異サイレンシング26,27, 感染性亜ゲノムアンプリコン (ISA)28,29, ギブソン組み立て方法30、および円形ポリメラーゼ拡張反応(CPER)31の使用。
本明細書では、ZIKV株ZIKV-RGN13の全長cDNAクローンのエンジニアリングのための詳細なプロトコルについて説明し、毒性問題を克服するためにBACを使用し、およびVEroへのBAC cDNAクローンの直接トランスフェクションによる感染性rZIKVの救出について説明する。細胞32は、ヒトワクチン33の開発のために食品医薬品局(FDA)によって承認された細胞株である。このシステムでは、ウイルスゲノムの全長cDNAコピーをBACプラスミドpBeloBAC1134(図2A)に組み立て、エシェリヒア大腸菌F因子35に由来する低コピー数プラスミド(細胞当たり1~2部)、これは、細菌の伝播中にフラビウイルス配列の毒性を最小限に抑えます。ZIKVゲノムのcDNAは、ヒトCMV即時早期プロモーターの制御下でpBeloBAC11に組み立てられ、細胞RNAポリメラーゼIIによるトランスフェクト細胞の核におけるウイルス(v)RNAの発現を可能にし、肝炎によって3'末端に横たわるデルタウイルス(HDV)リボザイム(RZ)、続いてウシ成長ホルモン(BGH)終端およびポリアデニル化シグナルの配列が続き、ウイルスゲノムの本物の5'-および3'末端を有する合成RNAを産生する(図2B)。このcDNA起動システムは、キャップされたウイルスRNAの細胞内発現を生み出し、インビトロ転写ステップを必要とせずに感染性ZIKVの回復を可能にする。BACアプローチは、他のフラビウイルスおよび他の陽性鎖鎖RNAウイルス36、37、および他の陽性鎖ウイルスの安定した、完全に機能的なcDNAクローンの構築に適用可能な強力な方法論を提供する。38、39、40、41.
1. BACにおけるZIKV感染性cDNAクローンの構築
注:BACにおけるZIKVの組み立て戦略について、RGN株13(加盟番号KU527068)について説明する(図2)。
2. 感染性rZIKVの救助のための高純度pBAC-ZIKVの準備
注:感染性ウイルスのトランスフェクションおよび救助に適した超純型pBAC-ZIKV感染クローンの大規模な調製は、BAC精製のために特別に開発された市販キットを用いてアルカリ性リシスによって行われる(表参照) 材料)。キットには、細菌ゲノムDNA汚染を除去するATP依存性エキソヌクレアーゼ消化ステップが含まれている必要があり、塩化セシウム法で得られたものと同様の純度の高いBAC cDNAの単離を可能にする。
3. ベロ細胞のトランスフェクションによるBAC cDNAクローンからの感染性rZIKVの救出
注:感染性rZIKVは、市販のカチオン性脂質トランスフェクション試薬を用いて、pBAC-ZIKV cDNAクローンを用いたベロ細胞のトランスフェクションによって回収される(材料の表を参照)図3)
4. 回収されたrZIKVの滴定
5. 成功したrZIKV救助の確認
注:駆出したウイルスの同一性をさらに確認するために、ZIKV Eタンパク質発現は、ZIKV Eタンパク質に特異的なマウスmAb 1176-56を用いて免疫蛍光によって分析される(図4D)。このmAbは、汎フラビウイルスEタンパク質mAb 4G2の状況とは対照的に、ZIKV Eタンパク質に特異的である(ステップ4.6.3)。あるいは、ウイルスのアイデンティティは、シーケンスによって確認することができる。
6. ウイルス株の増幅と生成
注:救出されたウイルスの同一性が確認されたら(セクション5)、Vero細胞上のウイルスを増幅し、さらなる研究のためにウイルスストックを生成する。
ここで説明するプロトコルは、いくつかのフラビウイルス配列に関連する毒性の問題を最小限に抑えるためにBACを使用して安定なZIKV全長cDNA感染クローンの生成を可能にする。BAC cDNAクローンからの感染性rZIKVの効率的な回収は、感受性ベロ細胞のトランスフェクション後に容易に達成することができる(図2)。このプロトコルを使用して、我々は、従来のクローニング方法とユニークな方法を使用して、BACプラスミドpBeloBAC1134に4つの重なり合うcDNA断片を順次クローニングすることにより、ZIKV株RGN 32の安定した全長cDNAクローンを生成しました。ウイルスゲノムに存在する制限部位(図2)。全長cDNAクローンは、トランスフェクト細胞の核内でvRNAの発現を可能にするためにヒトCMVプロモーターによって5'末端に横たわり、HDV RZによって3'末端に続いてBGHポリアデニル化および終端配列を、含むRNAを産生する。ウイルスゲノムの正確な3'-終わり(図2)。生成されたBAC cDNAクローンの細菌の安定性と、標準的な組換えDNA技術を用いて容易な操作が行われ、安定した全長cDNAクローンの迅速かつ信頼性の高い生成のためのBAC cDNAアプローチの可能性が強調されています。ZIKVおよび他のフラビウイルスまたは不安定なウイルスゲノムを有する陽性鎖RNAウイルス。
BAC cDNAクローンを組み立てた後(図2)、カチオン性リポソームを用いたBAC cDNAクローンを用いた感受性ベロ細胞の直接トランスフェクション後に感染性ウイルスを容易に回収できる(図3)。このcDNA起動システムは、キャップされたvRNAの細胞内発現を可能にし、インビトロ転写ステップを必要とせずに感染性ウイルスの回復を可能にした。このアプローチを用いて、トランスフェクション後5日間で106 PFU/mLより高い力価でrZIKV-RGNを救出することができました(図4A)。また、救助されたウイルスは、明確なCPE(図4B)を誘導し、約2mmの均質なプラーク(図4C)を生成し、その同一性をmAb特異的を用いてシーケンシング(図示せず)と免疫蛍光分析によって確認した。ZIKV Eタンパク質の場合、1176-56 (図 4D)インビトロデータは、回収されたrZIKV-RGNがベロ細胞および天然ZIKV単離32と比較してレベルに効率的に複製されたことを示す(データは示さない)。全体的に、これらの結果は、感染性rZIKVがBACで組み立てられた全長のcDNAクローンから救出できることを示している。
図 1: ZIKVゲノム組織とビリオン構造(A) ゲノム組織:ZIKVは、単一のポリタンパク質として翻訳される正の一本鎖RNAを含む。翻訳されたポリタンパク質をウイルス(矢印)および宿主(ダイヤモンド)プロテアーゼで切除し、構造タンパク質キャプシド(C、青)、マトリックス(M、茶色)、およびエンベロップ(E、緑色)、および7つの非構造タンパク質(NS1、NS2A、NS2B、NS3、NS4A、NS4B、NS5)を産生した。ウイルスゲノムの末端にある5'および3'未翻訳領域(UtR)は、黒い線で示されます。(B)ビリオン構造:ZIKVビリオンは、EおよびMタンパク質で飾られ、イコサヘドラ状構造を持つ脂質二重層に固定された。ウイルスエンベロープの下には、ウイルスゲノムRNAに関連するCタンパク質からなるウイルスヌクレオカプシドであった。この図は、アビラ・ペレスら18から適応されています.この図のより大きなバージョンを表示するには、ここをクリックしてください。
図 2: BACにおけるZIKV全長感染性cDNAクローンの組み立て。(A) pBeloBAC11 BACの概略表現:調節遺伝子parA、parB、parC、およびrepE、F因子複製起源(OriS)、クロラムフェニコール耐性遺伝子(Cm r)、およびlac Z遺伝子が示される。感染性ZIKV cDNAクローンの組み立てに使用される関連する制限部位には、下線が引かれています。(B) ZIKV全長感染性cDNAクローンをpBeloBAC11 BAC:4つの重なり合うDNA断片(Z1-Z4)を組み合わせ、ZIKVゲノム全体をカバーし(図1)、示された制限部位によって横たわって、化学的に生成したpBeloBAC11に合成し、順次クローン化して感染性ZIKV cDNAクローンpBAC-ZIKVを生成した。全長ZIKV感染性cDNAは、ヒトサイトメガロウイルス即時早期プロモーター(CMV)の制御下で組み立てられ、HDVリボザイム(RZ)およびウシ成長ホルモン(BGH)終端およびポリアデニル化配列によって3'末端に横たわっていた。ウイルス遺伝子および調節要素の頭字語は、図1に記載されているようにである。この図のより大きなバージョンを表示するには、ここをクリックしてください。
図 3: BAC cDNAクローンからrZIKVを生成するワークフロー。合流の90%におけるベロ細胞を、カチオン性リポソームを用いてZIKV全長感染性cDNAクローンpBAC-ZIKV(図2)を用いて単層にトランスフェクトした。4-6日後に、CPEが明らかになったとき、rZIKVを含む組織培養上清を採取し、ウイルスの存在について評価した(図4)。.この図のより大きなバージョンを表示するには、ここをクリックしてください。
図 4: rZIKVのリカバリとインビトロ特性。(A) BAC cDNAクローンからの感染性rZIKVの救助:合流の90%のベロ細胞(6ウェルプレートフォーマット、トリプリケート)を模擬トランスフェクトまたはpBAC-ZIKV(図3)の4μg/ウェルでトランスフェクションし、および移植後の指定日に、組織培養上清におけるウイルス力料は、プラークアッセイ(PFU/mL)によって決定した。誤差バーは、3つの異なるトランスフェクション実験からの標準偏差を示します。点線の黒い線は検出の限界を示します(50 PFU/mL)。(B) ウイルスCPE:90%合流(6ウェルプレートフォーマット、三価)のベロ細胞は、rZIKVで模擬感染(上)または感染(0.5 PFU/細胞のMOI)を有し、48h後感染時に、CPEの存在を光顕微鏡検査により評価した。スケールバー = 100 μm. (C)ウイルスプラークアッセイおよび免疫染色: 90%合流(12ウェルプレートフォーマット)のベロ細胞はrZIKVに感染し、72時間の感染後、ウイルスプラークは結晶紫色染色(左)または免疫染色によって可視化された(右)パンフラビウイルスEタンパク質mAb 4G2を用いて。スケールバー = 5mm. ( D) 免疫蛍光:90%合流(24ウェルプレートフォーマット、トリプリケート)のベロ細胞をrZIKVで感染させ(0.5 PFU/細胞のMOI)、48h後感染時に、mAb 1176-56を用いて免疫蛍光で分析し、ZIKVに特異的Eタンパク質。細胞核をDAPIで染色した。ZIKV感染ベロ細胞の代表的なマージ画像を示す。右上の白い正方形は、ZIKV感染ベロ細胞の拡大画像を表しています。スケールバー = 100 μm.この図のより大きなバージョンを表示するには、ここをクリックしてください。
感染性cDNAクローンは、RNAウイルスの基礎研究やワクチンの開発および/または抗ウイルス戦略の同定に不可欠な分子ツールを構成します。しかし、フラビウイルスを含む多くの陽性鎖RNAウイルスの場合、標準的な高コピー数プラスミドを用いて細菌に伝播した場合、クローン化されたcDNAの不安定性のために感染性cDNAクローンの生成は困難である。ZIKVおよび他のフラビウイルスの場合、この不安定性は主にウイルスゲノム14、15、16、17に存在する不可解な細菌プロモーターからの毒性ウイルスタンパク質の漏出発現によるものである。.ここでは、毒性問題を克服するためにBACプラスミドpBeloBAC1134(図2A)を使用することに基づいて、単一のプラスミドとして安定なZIKV全長感染性cDNAクローンを生成するための代替かつ強力なプロトコルを説明する。CMVプロモーターは、トランスフェクト細胞の核におけるvRNAの発現を可能にし、HDV RZは正確な3'-終端を持つvRNAを生成する(図2B)。この方法を用いて、感受性ベロ細胞の直接トランスフェクション後の感染性rZIKVの効率的かつ信頼性の高い回復を可能にするZIKV株RGNの完全に安定した感染クローンの生成に成功しました(図3および図4)。
ここ数年、ZIKV感染性cDNAクローンに関連する不安定な問題を克服するために多大な努力がなされ、cDNA断片のインビトロライゲーションを含むいくつかのアプローチが18に成功しました24 ,25, 低コピープラスミド19,20, サイレント変異の導入による不可解な細菌プロモーターの不活性化 26,27, イントロン挿入21,22歳,23、 ギブソン組み立て方法30、 ISA 法28,29、 および CPER31の使用 .これらのアプローチは毒性の問題を克服し、ZIKV感染性cDNAクローンを生成するのに有用であるが、それらのいくつかは手間がかかり、ウイルスを減らすインビトロライゲーションおよび転写ステップの必要性を含むいくつかの欠点を提示する回復効率またはウイルスの適合性に影響を与える可能性のある不可解な細菌プロモーターを不活性化する多数の無声突然変異の導入。このプロトコルで説明するアプローチには、次のような利点があります。 i) BACプラスミドpBeloBAC1134は、厳密に制御された複製を有し、細胞当たりプラスミドのコピーを1つまたは2つ保持し、毒性を最小限に抑え、不安定なcDNの細菌の安定した維持を可能にする。ii)BACプラスミドの伝播および修飾は、大型のBAC-DNA断片および低コピープラスミドを操作するために、このプロトコルに記載されているわずかな修飾を考慮して、従来のプラスミドのそれらにほぼ類似している。ろよ、 キャッピングされたZIKV vRNAの細胞内発現およびインビトロ転写ステップを必要とせずに感染性ウイルスの回復。iv) 感染性rZIKVは、BAC cDNAクローンを用いて感受性細胞(例えば、ベロ)の直接トランスフェクション後に生成される。哺乳動物細胞におけるDNAトランスフェクションはRNAトランスフェクションよりも効率的であるため、BACアプローチによるウイルス回収効率はRNA転写物を用いて観察されたものよりも高く、培養細胞における通過数を減少させ、ウイルスストックを生成し、その結果、細胞培養適応による望ましくない突然変異の導入を制限する。
最後に、BACアプローチの可能性は、デングウイルス36を含む他のフラビウイルスの感染性cDNAクローンを設計するために、この方法(わずかな変更で)の成功によってサポートされ、および高い影響を及ぼすいくつかのコロナウイルスヒトおよび動物の健康、例えば透過性胃腸炎コロナウイルス37(TGEV)、ネコ感染性性性性性性性性性性性性性ウイルス38(FIPV)、ヒトコロナウイルスOC4339(HCoV-OC43)、重症急性呼吸器症候群コロナウイルス40(SARS-CoV)、および中東呼吸器症候群コロナウイルス41(MERS-CoV)、とりわけ。
ここで説明するプロトコルでは、考慮すべき重要な手順が 2 つあります。1つの重要な考慮事項は、BACプラスミドに存在しないウイルスゲノム中の適切な一意の制限部位を同定することです。十分な制限部位が利用できない場合、サイレントヌクレオチド変異の導入により、クローニング設計中に新しい制限部位を生成することができます。もう一つの重要な問題は、BACプラスミドが細胞あたり1つまたは2つのコピーにのみ存在し、したがって、細菌ゲノムDNAの高い汚染を有するBACプラスミドの低収率は、高および高のために設計された標準的なプロトコルを使用して得られるということです。中型コピー番号プラスミド。この潜在的な問題は、大量の培養量を使用して容易に克服し、BAC精製のために特別に開発された市販キットでBACプラスミドを精製します。
要約すると、我々は、これらの生物学の研究を容易にするために、他の陽性鎖RNAウイルスの安定した完全に機能的な感染性cDNAクローンを生成するために適応することができるBACの使用に基づいて強力なZIKV逆遺伝的アプローチを開発しました。ウイルスおよびワクチンの開発および/または抗ウイルス薬の同定を容易にする。
著者は何も開示していない。
著者らは、BAC cDNAクローン生成における彼女の技術的支援とスネザナ・ディミトロヴァがビデオの準備を手伝ってくれたことに感謝したいと思います。この研究は、スペイン経済競争力省(MINECO、助成番号BFU2016-79127-R)からF.A.T.と国立衛生研究所(NIH、助成番号1R21AI120500)からL.M.S.およびF.A.Tへの助成金によって一部支援されました。
Name | Company | Catalog Number | Comments |
1. Molecular Biology Reagents | |||
Afe I | New England BioLabs | R0652S | 10,000 units/mL |
AmpliTaq DNA Polymerase | ThermoFisher Scientific (Applied Biosystems) | N8080161 | 5,000 Units/mL |
ApaL I | New England BioLabs | R0507S | 10,000 units/mL |
Asc I | New England BioLabs | R0558S | 10,000 units/mL |
BamH I | New England BioLabs | R0136S | 10,000 units/mL |
BstB I | New England BioLabs | R0519S | 20,000 units/mL |
Chloramphenicol | Sigma-Aldrich | C0378 | |
ElectroMAX DH10B Cells | ThermoFisher Scientific (Invitrogen) | 18290015 | Electocompetent DH10B cells |
Electroporation Cuvettes, 0.2 cm | Bio-Rad | 165-2086 | |
Ethanol | Merck | 100983 | Flamable |
Isopropanol | Merck | 109634 | Flamable |
Large-Construct Kit (10) | QIAGEN | 12462 | For high-purity BAC preparation |
LB Broth | ThermoFisher Scientific (Invitrogen) | 12780029 | Can be homemade as well |
LB with Agar | ThermoFisher Scientific (Invitrogen) | 22700041 | Can be homemade as well |
Methanol | Merck | 106009 | Flamable |
Mlu I | New England BioLabs | R0198S | 10,000 units/mL |
Oligonucleotides | IDT | N/A | |
Plasmid pBeloBAC11 | New England BioLabs | ER2420S (E4154S) | |
Plasmid Midi Kit (25) | QIAGEN | 12143 | For midle-scale preparation of BAC plasmids |
Pml I | New England BioLabs | R0532S | 20,000 units/mL |
Polypropylene tubes (10 mL) | DeltaLab | 175724 | Other commercial sources are acceptable |
QIAEX II Gel Extraction Kit (150) | QIAGEN | 20021 | Gel-clean-up kit optimized for DNA fragments larger than 10 kb |
Shrimp AlKaline Phosphatase (rSAP) | New England BioLabs | M0371S | 1,000 units/mL |
SOC Medium | ThermoFisher Scientific (Invitrogen) | 15544034 | Can be homemade as well |
Synthesis of cDNA fragments | Bio Basic | N/A | |
T4 DNA Ligase | Sigma-Aldrich (Roche) | 10481220001 | 1,000 units/mL |
2. Cell Culture Reagents | |||
6-Well Plates | ThermoFisher Scientific (Nunc) | 140675 | |
12-Well Plates | ThermoFisher Scientific (Nunc) | 150628 | |
24-Well Plates | ThermoFisher Scientific (Nunc) | 142485 | |
Agar Noble | VWR | 214230 | |
Alexa Fluor 488 Conjugate ant-mouse secondary antibody | Varies | N/A | |
Biotinylated Anti-Mouse Secondary Antibody | Varies | N/A | |
Cell Culture Dishes (100x21 mm) | ThermoFisher Scientific (Nunc) | 172931 | |
Conical Tubes (15 mL) | VWR | 525-0150 | |
Conical Tubes (50 mL) | VWR | 525-0155 | |
Crystal Violet | Sigma-Aldrich | C6158 | |
DAPI | Sigma-Aldrich | D9542 | Toxic and carcinogenic |
DEAE-Dextran | Sigma-Aldrich | D9885 | |
DMEM | ThermoFisher Scientific (Gibco) | 11995065 | |
Fetal Bovine Serum (FBS) | ThermoFisher Scientific (HyClone)) | SV30160.03 | |
Formaldehyde | Sigma-Aldrich | F8775 | Toxic and carcinogenic |
L-Glutamine | ThermoFisher Scientific (Gibco) | 25030081 | |
Lipofectamine 2000 | ThermoFisher Scientific (Invitrogen) | 11668019 | Transfection reagent |
Nonessential amino acids | ThermoFisher Scientific (Gibco) | 11140035 | |
Opti-MEM I Reduced Serum Medium | ThermoFisher Scientific (Gibco) | 31985070 | Transfection medium |
Pan-flavivirus E protein mAb 4G2 | BEI Resources | NR-50327 | |
Paraformaldehyde | Electron Microscopy Sciences | 15710-S | Toxic and carcinogenic |
PBS | ThermoFisher Scientific (Gibco) | 14190144 | |
Penicillin/Streptomycin | ThermoFisher Scientific (Gibco) | 15140122 | |
ProLong Gold Antifade Reagent | ThermoFisher Scientific (Invitrogen) | P10144 | |
Triton-X-100 | Sigma-Aldrich | T8787 | |
Vectastain ABC Kit | Vector Laboratories Inc | PK-4010 | Avidin/biotin-based peroxidase kit |
Vero Cells | ATCC | CCL-81 | |
ZIKV E Protein mAb 1176-56 | BioFront Technologies | BF-1176-56 | |
3. Equipment | |||
Agarose Gel Electrophoresis System | Bio-Rad | 1704468 | Other commercial sources are acceptable |
Class II Biosafety CO2 Cabinet | Varies | N/A | Other commercial sources are acceptable |
Desktop Refrigrated Centrifuge | Varies | N/A | |
Fluorescence Microscope | Varies | N/A | |
High-Speed Refrigrated Centrifuge | Varies | N/A | |
MicroPulser Electroporator | Bio-Rad | 1652100 | Other machines are acceptable |
SimpliAmp Thermal Cycler | ThermoFisher Scientific (Applied Biosystems) | A24811 | Other machines are acceptable |
Vortexer | Varies | N/A |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved