JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

マウス肝臓における胆管密度を正確に定量するための、かなりシンプルで敏感な方法を提示する。この方法は、遺伝的および環境修飾子の効果と胆汁病のマウスモデルにおける潜在的な治療法の有効性の決定に役立ちます。

要約

マウスは、胆汁病を研究するためのモデル生物として広く使用されています。胆道系の発達と機能を評価するために、血清化学、組織学的分析、特定マーカーの免疫染色など、様々な技術が用いられる。これらの技術は胆道系に関する重要な情報を提供することができますが、多くの場合、肝臓全体にわたって胆管(BD)発達欠陥の全体像を提示しません。これは、胆汁の発達に著しい障害を持つ動物においても胆汁を排出するマウス肝臓の堅牢な能力に起因する。ここでは、変異型/トランスジェニックマウスのすべてのローブをカバーするセクションで、各ポータル静脈(PV)に関連する平均BD数を計算する簡単な方法を示す。この方法では、肝臓は、様々なゲノムと実験条件間の比較を容易にするために、ステレオタイプ的な方法で取り付けられ、切除される。BDは、シトケラチン染色胆管細胞の光顕微鏡検査によって同定され、その後、肝臓部に存在するPVの総数でカウントされ、除算される。一例として,この方法が野生型マウスとアラギル症候群のマウスモデルを明確に区別する方法を示す.ここで提示する方法は、胆樹の三次元構造を可視化する技術に代わるものとはならない。しかし、それは定量的にBDの発達およびマウスの管反応形成の程度を定量的に評価する容易で直接的な方法を提供する。

概要

胆汁の木は哺乳類の肝臓の重要な部分であり、肝細胞から腸への胆汁の通過を可能にする。肝内胆管(BD)は、ノッチおよびTGFβシグナル伝達1、2を介して二電位肝芽細胞と区別する胆管状細胞によって形成される。成熟したCDへの胆管細胞とその組み立ての適切な仕様とコミットメントは、肝内胆樹の開発のために重要です。肝臓が発達中または臓器再生時に成長するにつれて、胆汁器系は適切な胆汁の排液を確保するために肝臓に沿って発達する必要がある。さらに、多くのシンドロミックおよび非シンドロミック疾患は、肝内BDs3の貧弱をもたらす。さらに、多くの急性および慢性肝疾患は、胆汁マーカーを発現するが、必ずしも胆汁細胞または形態から生じるとは限らないかなりの数の細胞の存在として定義される、肝臓のいわゆる管反応を引き起こす。特許BDs4.多系統障害アラギル症候群(ALGS)では、ノッチリガンドギザギザギザ(JAG1)のハプロインの充足は、BD形成およびコレスタ症5、6の不十分なBD形成をもたらす。我々の研究室は最近、以前に生成されたJag1ヘテロジゴウスマウスライン7がALGS8におけるBDポーシティの動物モデルであることを実証した。ALGSのこのマウスモデルでは、胆管細胞はまだ存在する。しかし、彼らは成熟した特許BDs8に組み込むことを約束することができません。したがって、BDの貧弱のモデルにおける肝臓の分析は、胆管細胞の明らかな存在または不在以上のものを必要とする。成熟したCDが肝臓に存在する程度を正確に評価することが重要です。

解剖病理学では、BDのポーシティが存在するかどうかを評価するための受け入れられた定量的方法が9である。例えば、ヒト患者におけるALGSに関する研究は、肝生検9、10当たり少なくとも10のポータル血管を分析することによって、BDからポータル静脈(PV)比を定量することが多い。特許BDの形状および全体的な有無の分析は、血清化学と組み合わせることで、マウス11、12、13におけるBD発達に関する貴重な情報を提供することができる。しかし、マウスは、血清ビリルビンレベル8のわずかな増加でかなりの数のBDを失う可能性があります。したがって、PV当たりの存在するBDの数を評価する定量的方法は、マウスにおけるBDのポーシティの程度をより直接的に測定することができる。最近の報告では、我々はすべての肝葉全体のPVあたりのBDの数を定量化し、Jag1+/–動物8のBD対PV比の有意な減少を報告した。 我々の分析の過程で、炎症反応および管反応の程度に有意な変動があるにもかかわらず、BD対PV比は大きな変動性8を示さない。さらに、BDとPV比の定量化により、Jag1+/グリコシルトランスフェラーゼ遺伝子Poglut1のコピーを1部除去することで、動物のBDの貧弱性を有意に改善できることを実証することができました。 Jag1+/+の背景では、血管平滑筋細胞におけるPoglut1の条件付き損失は、BD数の漸進的な増加をもたらす(20-30%)P7で、大人8で顕著になります.繰り返しますが、この技術は、P7でも、これらの動物のBD密度の増加が統計的に有意であることを示すことを可能にした。なお、生後4ヶ月のこの遺伝子型におけるBD密度の増加は、樹脂鋳造解析を通じて検証された。8これらの観測値および異なるALGSマウスモデル14、15におけるBD密度を測定した他の報告は、様々な変異体の胆汁欠損を分析するための全体的な戦略にこの方法を組み込むことを促したトランスジェニックマウス。

ここでは、肝疾患のマウスモデルにおけるBD罹患率を調べるために使用できる簡単な手法を詳述する(図1)。この方法では、コランゴサイトマーカーサイトケラチン(CK)8およびCK19(以下、広スペクトルCK、wsCK)との共染色を用いて、マウス肝臓におけるBDsおよび非組み込み胆管細胞を可視化する。α平滑筋アクチン(αSMA)に対する抗体を標識容器に染色する。すべての肝葉をカバーするセクションにおけるBDとPV比の系統的分析は、各遺伝子型について多数のPVが分析されることを保証する。我々の方法は、2D画像におけるBDとPVの定量化に依存しているため、胆樹の3D構造や小さな胆管の完全性に対する特定の変異の影響を調べたりするのに適していません。それにもかかわらず、それはマウスの胆道の発達を評価するために研究者のための簡単で客観的な戦略を提供する。

Access restricted. Please log in or start a trial to view this content.

プロトコル

すべての動物は、施設の動物ケアと使用委員会のガイドラインと承認された動物プロトコルの下でベイラー医科大学のバリア動物施設に収容されました。

1. マウス肝組織の採取

  1. 肝臓収穫のためのマウスの調製
    1. イソファランを使用してマウスを安楽死させる。
    2. 死を確実にするために、マウスの頸部脱臼を行う。
    3. 肋骨ケージの約1インチ下に横切開を行います。
    4. 肝臓の腹部表面全体を露出させる。
  2. マウス肝臓の採取
    1. 慎重に、小さなはさみで、肝臓を腹部の他の器官に接続する靭帯を切り取る。
    2. 一般的なBDを切り取り、腸から肝臓を切り離す。
    3. 慎重に胆嚢に保持することにより、肝臓を削除し、すぐに4%パラホルムアルデヒド(PFA)によって3分の1に充填された50 mLチューブに入れます。

2. パラフィンの肝臓の固定と埋め込み

  1. 固定
    1. 肝臓組織を4°Cで4%PFAで48時間固定します。
    2. 4°Cで1時間70%EtOHでティッシュを洗います。
    3. 組織を95%EtOHで2回洗い、4°Cで1時間ずつ洗います。
    4. 4°Cで1時間100%EtOHでティッシュを2回洗います。
  2. クリア
    1. 肝臓組織を浄化剤(材料の表)で3回、室温で30分間洗う。
      注:肝臓は、3回目の洗浄に続いて硬く感じる必要があります。
  3. パラフィンへの埋め込み
    1. 組織カセットをパラフィンワックスのティッシュカビに入れ、それぞれ30分間洗います。ワックスは60°Cに予熱する必要があります。
    2. 組織金型をパラフィンワックスで3分の1の高さに充填し、60°Cで加熱ブロックに保管してください。
    3. 肝臓をカビの中に入れ、腹部側を上に向けて置きます。
    4. 加熱ブロックから金型を慎重に取り外します。
    5. カセットの上部を金型の上に置き、ホット液体パラフィンでトップオフします。
    6. 金型とブロックを一晩室温まで冷やします。
      注:組織ブロックは室温で貯えることができる。

3. 肝臓組織の切除

  1. 断面化のためのブロックの準備
    1. 金型からブロックを取り除く前に、5分間氷の上に金型を置きます。
    2. ブロックと氷の間に存在するラボティッシュペーパーで氷の上にブロックを置きます。
    3. 最高の組織スライス結果を求めて断面しない場合は、氷の上にブロックを置いてください。
  2. 肝臓ブロックの断面
    1. マイクロトームを使用して、肝臓の表面的な、後部側を切り取ることから始める。断面は5 μmでなければなりません。
    2. 解剖顕微鏡の下の表面的なセクションをチェックして、セクションがせき取られたり折られたりしていないことを確認してください。
    3. カウデートローブを含む肝臓のセクションを取る.
      注:一部のブロックでは、同じティッシュスライス上に左、中間、右、およびコーデートローブがあります。
    4. 4 つのローブがすべて同じスライド上に存在しないブロックの場合は、左、中間ローブ、右ローブが同じスライド上に存在するまでスライスを続けます。

4. wsCKおよびαSMAのための免疫組織化学

  1. 免疫組織化学用スライドの処理
    1. 分析する遺伝子型ごとに 1 つのスライドを選択します。
    2. シレンで15分間、100%EtOH、95%EtOH、最後に70%EtOH(各溶液で3 x 5分)を洗浄します。
    3. スライドを脱イオンH2 Oで5分間洗います。
    4. 抗原検索溶液(トリスベース、高pH)にスライドを浸します。
    5. 圧力鍋で圧力下で10psiで3分間熱します。
    6. スライドを室温(約35分)まで冷やします。
  2. 組織セクションを遮断する
    1. Pap ペンを使用して、スライド上のセクションの概要を説明します。
    2. リン酸緩衝生理食べ物(PBS)+0.1%の十二を塗布し、セクションを2回、それぞれ5分ずつ覆う。
    3. PBS + 0.3% トリトンで 1:50 で通常のヤギ血清 (NGS) を混合してブロッキング バッファーを作成します。ブロッキングと一次抗体の両方に十分なバッファーを持つためには、セクションあたり100 μLで十分です。
    4. セクションごとに100 μLのブロッキング溶液を適用します。
    5. ブロッキング溶液で覆われたスライドを4°Cで1時間インキュベートします。
  3. wsCKおよびαSMAの染色
    1. 希釈抗CK8および抗CK19抗体16(発達研究ハイブリドーマバンク、TROMA-IおよびTROMA-III)1:20をブロッキングバッファー中にwsCK用染色する。抗αSMA抗体17(材料表)を同じバッファー内で1:200に希釈する。
    2. 3つの抗体をすべて含む希釈抗体溶液を100μLの各セクションに塗布する。
    3. 抗体溶液で覆われたスライドを一晩4°Cでインキュベートする。
    4. PBS + 0.1% トリトンでスライドを3回、それぞれ5分ずつ洗います。
    5. 希釈二次抗体(抗ラット-Alexa488および抗マウス-Cy5)1:200 PBS+ 0.3%トリトン。
    6. 両方の二次抗体を含む二次抗体溶液の100 μLをスライドに適用します。
    7. 室温で1時間インキュベートします。
  4. DAPI核染色と取り付け
    1. スライドを3回、それぞれ5分ずつ洗います。
    2. 各セクションに 100 μL の DAPI (1:3000) を 10 分間適用します。
    3. スライドにアンチフェード取り付け媒体(材料のテーブル)を適用し、ティッシュセクションの上にガラスカバースリップを置きます。スライドは一晩4°Cのままにしておきます。次の日にスライドをシールします。
    4. スライドは4°Cで保管し、取り付けから1週間以内に画像を保存します。

5. BDのイメージングと定量

  1. イメージング肝臓セクション
    1. イメージングの前に、ラボメンバーの助けを借りてサンプルの遺伝子型に目がくらむ。すべてのイメージング ファイルに、動物/サンプル番号以外の遺伝子型やその他の特定の識別情報がないことを確認します。
    2. 蛍光顕微鏡を使用して、各セクションの1倍ズームで20倍の画像を撮り、肝臓全体のすべてのPVが画像化されていることを確認します。左、中間、右、カウデートローブを含めます。
      注:我々は通常、肝臓の大きさに応じて、動物あたり60-90ポータルの管を見つける。
    3. PVを同一視するには、αSMAとwsCK染色を探します。αSMA陽性であるがwsCK染色に欠けている構造は、ポータル構造ではない。
  2. BD の識別とカウント
    1. 動物/サンプル番号、画像番号、PV数、および BD の数の列を含むスプレッドシートを作成します。
    2. 各イメージを調、「イメージあたりの PV 数を特定して記録します。.
    3. 定義可能な内膜を囲む胆管細胞(wsCK+)の存在によって、各画像の特許BDを識別する。構造体は、他のwsCK+細胞から間葉で分離する必要があります。
    4. 各特許BDをカウントし、画像番号と同じ列に配置します。
    5. PVで撮影した画像ごとにこれを行います。
    6. 肝臓サンプル内のすべての PV とすべての BD の合計を計算します。
    7. 肝臓サンプルのBD対PV比を計算します。

Access restricted. Please log in or start a trial to view this content.

結果

我々は以前にJag1+/–動物、ALGS8のマウスモデルで胆汁欠損を文書化した。BDとPV比を決定するために、P30マウスの肝臓を切り離し、血管マーカーαSMAと共にCK8およびCK19(wsCK)のためにそれらを共染色した。その後、各肝葉のすべてのPVを画像化しました。図2Aに示すように、PVを隣接するwsCK染色(矢印)を持つαSMA染色容器とし?...

Access restricted. Please log in or start a trial to view this content.

ディスカッション

マウスにおけるBDの発達と修復の解析は、胆嚢障害の病因およびメカニズムを研究する上で重要なツールである。さらに、新しい治療法の開発は、再生可能で好ましくは定量化可能な表現型の確立に部分的に依存する。マウスモデルにおける現在の表現型は、通常、血清化学、肝臓組織学および細胞型特異的マーカーの免疫染色を伴う。これらの技術は胆道系の構造と機能に関する貴重な情?...

Access restricted. Please log in or start a trial to view this content.

開示事項

著者は利害の対立を持っていません。

謝辞

著者らは、国立衛生研究所(NIH)(R01 GM084135およびR01 DK109982)、NIH P30 DK56338の下でテキサス医療センター消化器病センターからのパイロット/実現可能性賞、およびアラギル症候群アクセラレータ賞からの支援を認めます。医療財団

Access restricted. Please log in or start a trial to view this content.

資料

NameCompanyCatalog NumberComments
Isothesia (Isoflurane)Henry Schein11695-6776-2
DesiccatorBel-Art16-800-552
10% PFAElectron Microscopy Sciences15712
50 mL tubeThermoScientific339653
70% EthanolDecon Laboratories2401
95% EthanolDecon Laboratories2801
100% EthanolDecon Laboratories2701
HistoChoiceVWR Life SciencesH103-4Lclearing agent
Omnisette Tissue CassetteFisher HealthCare15-197-710E
MacrosetteSimportM512
Paraplast X-TRAMcCormick Scientific39503002Parrafin
Tissue MoldFisher Scientific62528-32
MicrotomeMicromHM 325
Superfrost Plus Microscope SlidesFisher Scientific12-550-15
XyleneFisher ScientificC8H10
Tris-Based Antigen RetrievalVector LaboratoriesH-3301
Pressure CookerInstant PotLux Mini
Mini Pap PenLife Technologies8877
Polyoxyethylene 20 Sorbitan Monolaurate (Tween-20)J.T. BakerX251-07
Octyl Phenol Ethoxylate (Triton-X-100)J.T. BakerX198-07
Normal Goat SerumJackson Immunoresearch005-000-121
anti-CK8Developmental Studies Hybridoma BankTROMA-IAntibody Registry ID AB531826
anti-CK19Developmental Studies Hybridoma BankTROMA-IIIAntibody Registry ID AB2133570
anti-αSMASigma AldrichA2547, Clone 1A4
anti-rat-Alexa488ThermoFisherA21208
anti-mouse-Cy5Jackson Immunoresearch715-175-151
DAPIVector LaboratoriesH-1000
22 x 50 mm2 micro cover glassVWR Life Sciences48393 059
Fluorescence MicroscopeLeicaDMI6000 B
KimwipesKimtech Science05511
VECTASHIELDVector LaboratoriesH-1000Antifade Mounting Medium

参考文献

  1. Zong, Y., et al. Notch signaling controls liver development by regulating biliary differentiation. Development. 136 (10), 1727-1739 (2009).
  2. Clotman, F., et al. Control of liver cell fate decision by a gradient of TGFβ signaling modulated by Onecut transcription factors. Genes & Development. 19 (16), 1849-1854 (2005).
  3. Karpen, S. J. Update on the etiologies and management of neonatal cholestasis. Clin Perinatol. 29 (1), 159-180 (2002).
  4. Roskams, T. A., et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology. 39 (6), 1739-1745 (2004).
  5. Oda, T., et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nature Genetics. 16 (3), 235(1997).
  6. Li, L., et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nature Genetics. 16 (3), 243(1997).
  7. Xue, Y., et al. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Human Molecular Genetics. 8 (5), 723-730 (1999).
  8. Thakurdas, S. M., et al. Jagged1 heterozygosity in mice results in a congenital cholangiopathy which is reversed by concomitant deletion of one copy of Poglut1 (Rumi). Hepatology. 63 (2), 550-565 (2016).
  9. Hadchouel, M. Paucity of interlobular bile ducts. Seminars in Diagnostic Pathology. 9 (1), 24-30 (1992).
  10. Emerick, K. M., et al. Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology. 29 (3), 822-829 (1999).
  11. Poncy, A., et al. Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts. Dev Biol. 404 (2), 136-148 (2015).
  12. Hofmann, J. J., et al. Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome. Development. 137 (23), 4061-4072 (2010).
  13. McCright, B., Lozier, J., Gridley, T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development. 129 (4), 1075-1082 (2002).
  14. Andersson, E. R., et al. Mouse Model of Alagille Syndrome and Mechanisms of Jagged1 Missense Mutations. Gastroenterology. 154 (4), 1080-1095 (2018).
  15. Loomes, K. M., et al. Bile duct proliferation in liver-specific Jag1 conditional knockout mice: effects of gene dosage. Hepatology. 45 (2), 323-330 (2007).
  16. Brulet, P., Babinet, C., Kemler, R., Jacob, F. Monoclonal antibodies against trophectoderm-specific markers during mouse blastocyst formation. Proc Natl Acad Sci U S A. 77 (7), 4113-4117 (1980).
  17. Skalli, O., et al. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol. 103 (6 Pt 2), 2787-2796 (1986).
  18. Kamath, B. M., et al. A longitudinal study to identify laboratory predictors of liver disease outcome in Alagille syndrome. Journal of Pediatric Gastroenterology and Nutrition. 50 (5), 526(2010).
  19. Mouzaki, M., et al. Early life predictive markers of liver disease outcome in an International, Multicentre Cohort of children with Alagille syndrome. Liver International. 36 (5), 755-760 (2016).
  20. Shiojiri, N. Development and differentiation of bile ducts in the mammalian liver. Microsc Res Tech. 39 (4), 328-335 (1997).
  21. Crawford, J. M. Development of the intrahepatic biliary tree. Semin Liver Dis. 22 (3), 213-226 (2002).
  22. Kaneko, K., Kamimoto, K., Miyajima, A., Itoh, T. Adaptive remodeling of the biliary architecture underlies liver homeostasis. Hepatology. 61 (6), 2056-2066 (2015).
  23. Schaub, J. R., et al. De novo formation of the biliary system by TGFbeta-mediated hepatocyte transdifferentiation. Nature. 557 (7704), 247-251 (2018).
  24. Sparks, E. E., Huppert, K. A., Brown, M. A., Washington, M. K., Huppert, S. S. Notch signaling regulates formation of the three-dimensional architecture of intrahepatic bile ducts in mice. Hepatology. 51 (4), 1391-1400 (2010).
  25. Tanimizu, N., et al. Intrahepatic bile ducts are developed through formation of homogeneous continuous luminal network and its dynamic rearrangement in mice. Hepatology. 64 (1), 175-188 (2016).
  26. Walter, T. J., Sparks, E. E., Huppert, S. S. 3-dimensional resin casting and imaging of mouse portal vein or intrahepatic bile duct system. J Vis Exp. (68), e4272(2012).
  27. Popper, H., Kent, G., Stein, R. Ductular cell reaction in the liver in hepatic injury. J Mt Sinai Hosp N Y. 24 (5), 551-556 (1957).
  28. Yimlamai, D., et al. Hippo pathway activity influences liver cell fate. Cell. 157 (6), 1324-1338 (2014).

Access restricted. Please log in or start a trial to view this content.

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

146Jag1

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved