サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

ここでは、分化前のヒト人工多能性幹細胞由来心筋細胞、心臓線維芽細胞、および内皮細胞からなる3D自己組織化心臓ミクロ組織アレイを生成するための使いやすい方法論について説明する。心臓ミクロ組織を生成するためにこのユーザーフレンドリーで低細胞を必要とする技術は、疾患モデリングおよび医薬品開発の初期段階に実装することができる。

要約

人工多能性幹細胞(iPSC)からのヒト心筋細胞(CM)、心臓線維芽細胞(CF)、および内皮細胞(EC)の生成は、組織発達および疾患を駆動する異なる心血管細胞型間の複雑な相互作用を研究するユニークな機会を提供してきた。心臓組織モデルの分野では、いくつかの洗練された三次元(3D)アプローチが、誘導多能性幹細胞由来心筋細胞(iPSC-CM)を使用して、細胞外マトリックスと架橋剤の組み合わせで生理学的関連性と天然組織環境を模倣します。しかし、これらのシステムは、微細加工の専門知識なしで製造するのが複雑であり、自己組み立てに数週間かかります。最も重要なのは、これらのシステムの多くは、ヒト心臓の非筋細胞の60%以上を占める血管細胞および心臓線維芽細胞を欠いている。ここでは、心臓ミクロ組織を作製するためのiPSCsからの3つの心臓細胞型すべての導出について説明する。この容易なレプリカ成形技術により、標準的なマルチウェル細胞培養プレートで数週間心臓微小組織培養が可能になります。このプラットフォームは、初期播種密度に基づいてマイクロ組織サイズをユーザー定義で制御でき、観察可能な心臓マイクロ組織収縮を達成するために自己組織化に3日未満かかります。さらに、心臓ミクロ組織は、フローサイトメトリーおよび単一細胞RNAシーケンシング(scRNA-seq)の使用により、単一細胞尋問のための高い細胞生存率を維持しながら容易に消化することができる。心臓ミクロ組織のこの in vitro モデルは、創薬および疾患モデリングにおける検証研究の加速に役立つと想定しています。

概要

心臓血管研究の分野における創薬と疾患モデリングは、臨床的に関連するサンプルの不足と不十分なトランスレーショナルツール1のために、いくつかの課題に直面しています。高度に複雑な前臨床モデルまたは過度に単純化されたインビトロ単一細胞モデルは、再現可能な方法で病態生理学的状態を示さない。したがって、いくつかの小型化された組織工学プラットフォームは、ハイスループットな方法での適用の容易さと組織機能の忠実な反復との間のバランスを達成することを目標に、ギャップを埋めるのを助けるために進化してきました2,3。人工多能性幹細胞(iPSC)技術の出現により、組織工学ツールを心血管疾患状態の有無にかかわらず患者固有の細胞に適用して、研究上の質問に答えることができます4,5,6心臓組織に類似した細胞組成を有するこのような組織操作モデルは、1つまたは複数の細胞型の挙動における病理学的変化によって誘発される心毒性および機能障害について試験するための医薬品開発努力において利用され得る。

ヒトiPSCに由来する自己組織化ミクロ組織またはオルガノイドは、 インビボ対応 物と機能的類似性を示す小型組織様集合体である三次元(3D)構造である。iPS細胞の指向性分化または胚様体の形成を介して その場で オルガノイドを形成できるいくつかの異なるアプローチがある4。得られたオルガノイドは、有機生成を駆動する形態形成過程を研究するために不可欠なツールである。しかし、さまざまな細胞集団の存在と自己組織化の違いは、異なるオルガノイド間の転帰のばらつきにつながる可能性があります5。あるいは、局所的な細胞間相互作用を研究するために組織特異的細胞型を有するミクロ組織に自己組織化される前分化細胞は、優れたモデルであり、自己組織化成分を単離することが実行可能である。特にヒト心臓研究において、細胞が異なる患者系統または市販の供給源に由来する場合、多細胞成分を有する3D心臓微小組織の開発は困難であることが証明されている。

生理学的に関連性のある個別化されたin vitroモデルにおける細胞挙動の機構的理解を改善するためには、理想的には、すべての構成細胞型が同じ患者系統に由来するべきである。ヒトの心臓の文脈では、真に代表的な心臓in vitroモデルは、優勢な細胞型、すなわち心筋細胞(CM)、内皮細胞(EC)、および心臓線維芽細胞(CF)間のクロストークを捉えるだろう6,7。心筋の忠実な反復には、生物物理学的伸張と電気生理学的刺激だけでなく、ECやCFなどの細胞型をサポートすることから生じる細胞間シグナル伝達も必要です8。CFは、細胞外マトリックスの合成および組織構造の維持に関与している。病理学的状態では、CFは線維症を誘発し、CMs9の電気伝導を変化させることができる。同様に、ECはパラクリンシグナル伝達と重要な代謝要求の供給を通じてCMの収縮特性を調節することができます10。したがって、生理学的に関連するハイスループット実験を実施できるように、3つの主要な細胞型すべてで構成されるヒト心臓ミクロ組織が必要である。

ここでは、ヒトiPSC由来心筋細胞(iPSC-CM)、iPSC由来内皮細胞(iPSC-EC)、iPSC由来心臓線維芽細胞(iPSC-CF)の誘導による心臓微細組織の作製におけるボトムアップアプローチと、均一な心臓微小組織アレイにおけるそれらの3D培養について述べる。自発的に鼓動する心臓ミクロ組織を生成するこの容易な方法は、心臓生理機能の機能的および機構的理解のための疾患モデリングおよび薬物の迅速な試験に利用することができる。さらに、このような多細胞心臓マイクロ組織プラットフォームは、慢性または急性の培養条件下で経時的に心臓病の進行をエミュレートするために、ゲノム編集技術によって利用され得る。

プロトコル

培地、試薬、培養プレート調製

  1. 細胞培養用の細胞洗浄溶液:カルシウムまたはマグネシウムを含まない1xリン酸緩衝生理食塩水(PBS)またはハンクス平衡塩溶液(HBSS)を使用する。
  2. 心筋細胞分化培地
    1. 500 mLの心筋細胞基礎培地(RPMI 1640)に10 mLサプリメント(50x B27 + インスリン)を加えて分化培地#1を調製する。
    2. 500 mLの心筋細胞基礎培地(RPMI 1640)に10 mLサプリメント(50x B27マイナスインスリン)を加えて分化培地#2を調製する。
    3. 500mLの心筋細胞基礎培地(RPMI 1640)にサプリメント(50x B27プラスインスリン)を加えて精製培地#3を調製し、グルコースを差し引いた。
  3. 内皮増殖培地および磁気活性化細胞選別(MACS)試薬
    1. 市販の内皮細胞増殖用培地サプリメントキットを用いて内皮増殖用培地(EGM)を調製する。
    2. ウシ血清アルブミン(BSA)原液をリンス液で1:20に希釈して細胞分離選別緩衝液を調製する。
  4. 心線維芽細胞分化培地:線維芽細胞基礎培地(DMEM-高グルコース)と無血清線維芽細胞生命因子キットを用いて心臓線維芽細胞分化培地を調製する。
  5. 心臓微小組織作製および維持培地:サプリメント(50x B27プラスインスリン)およびEGMを含む心筋細胞基礎培地(RPMI 1640)を含む濾過培地を70/30v/v%比で調製する。
  6. 低分子および成長因子ストックソリューション
    1. 3つの細胞型すべての分化のために、GSK3-β阻害剤 CHIR 99021 (6-[[2-[[4-(2,4-ジクロロフェニル)-5-(5-メチル-1H-イミダゾール-2-イル)-2-ピリミジニル]アミノ]エチル]アミノ]-3-ピリジンカルボニトリル)の200μLアリコートを調製する);Wnt阻害剤 IWR-1-エンド (4-(1,3,3a,4,7,7a-ヘキサヒドロ-1,3-ジオキソ-4,7-メタノ-2H-イソインドール-2-イル)-N-8-キノリニル-ベンズアミド;および形質転換成長因子β(TGF-β)阻害剤 SB431542 (4-[4-(1,3-ベンゾジオキソール-5-イル)-5-(2-ピリジニル)-1H-イミダゾール-2-イル]ベンザミド)をジメチルスルホキシド(DMSO)中10mM濃度で投与した。
    2. ヒトiPSC-EC分化のために、超高純度蒸留水中の0.1%(w/v)BSA中に、塩基性線維芽細胞増殖因子(bFGF)(20μg/mL)、血管内皮増殖因子165(VEGF165;50μg/mL)、および骨形成タンパク質4(BMP4;20μg/mL)の100μLアリコートを調製する。アリコートを-20°Cで保管する。長期保存の場合、アリコートは-80°Cで最大1年間保存できます。
  7. iPSC-CM、iPSC-EC、およびiPSC-CFのメンテナンス用プレコーティングプレート。
    1. 成長因子還元(GFR)基底膜マトリックス培地をDMEM/F12で1:200の比率で希釈することにより、iPSC-CM再めっき用の基底膜マトリックス培地コーティング6ウェルプレートを調製する。希釈した基底膜マトリックス培地2mLを6ウェルプレートの各ウェルに加え、少なくとも2〜4時間セットしたままにする。
    2. 6ウェルプレートまたは10cm皿をゼラチンでプレコートする。2%ゼラチン溶液を37°Cのウォーターバス中で液化し、必要に応じてPBS中の濾過した0.2%(v/v)ゼラチンを適量に調製する。使用前に、培養プレートを0.2%ゼラチン10 mLで37°Cで少なくとも30分間コーティングする。
      注:ゼラチンプレートは、MACSの後のiPSC-CFとiPSC-ECの両方に使用できます。
  8. マイクロ組織カビの作製:乾燥した100mLガラス瓶にPBS中の2%低融点アガロース溶液を調製する。使用前にアガロースを121°C、15psiで20分間滅菌する。この流延用シリコーンマイクロモールドを121°Cでオートクレーブし、15psiで15分間処理した。
  9. 消化、免疫染色、フローサイトメトリーのためのソリューション
    1. 微小組織消化のために、PBS中のディスパーゼI(1U/mL)およびリベラーゼ(3U/mL)の酵素消化緩衝液を調製する。この溶液を氷の上に保管してください。
    2. 細胞および微小組織の両方の固定には、4.2%パラホルムアルデヒド(PFA)を含む氷冷市販の固定試薬を使用してください。
    3. 透過処理のためにPBS中に0.25%Triton X-100を、洗浄のために0.1%Tween-20を準備する。溶液は室温で保存することができる。
    4. 蛍光活性化細胞選別(FACS)分析のために、FACS緩衝液[PBSまたはHBSSと2%ウシ胎児血清(FBS)]を調製し、4°Cで保存する。
    5. 免疫染色のために、PBS中に2%の正常なヤギ/ロバ/ウサギ血清を調製する。抗体が産生された宿主に基づいて血清種を選択する。

2. 心臓分化と浄化

注:すべてのiPS細胞は、心筋細胞分化の前に〜75%〜80%のコンフルエンシーに維持されるべきである。このプロトコールに使用されたiPSは、スタンフォード心臓血管研究所(SCVI)バイオバンクで実施されたセンダイウイルスリプログラミングを使用して末梢血単核球(PBMC)から誘導された。

  1. 分化に先立ち、継代までのiPSCコロニーを培養する(P20)。
  2. 6ウェルプレートからiPSC培養液を取り出し、2mL PBSで細胞を1回洗浄した。
  3. 0日目に、各ウェルにCHIRを有する分化培地#1(6μM最終)を2mL添加することによって中内胚葉誘導を開始する。最終濃度は、異なるiPSCラインに対して6〜9μMの間で変化し得る。したがって、最適な心臓中胚葉誘導を同定するために、6ウェルプレート上で異なるCHIR濃度を試験することが推奨される。
  4. 2日目に、各ウェル内の新鮮な2mL培地#1と交換することによって細胞を回収する。
  5. 3日目に、各ウェルの培地をWnt阻害剤IWR-1-endo(5μM)を有する2mL分化培地#1と交換し、心臓系統仕様を誘導した。
  6. 5日目に、各ウェル内の培地を新鮮な2mL培地#1に交換することによって細胞を回収する。
  7. 7日目に、各ウェルの培地#2を2mL培地に交換する。心筋細胞の自発的な鼓動は、早くも8〜9日目に観察され得る。一部の系統では、拍動細胞は11日目まで現れることがあります。
  8. 分化培養物の精製のために、10日目に各ウェル中のグルコース培地#3を2mLから除いたものと交換する。
  9. 13日目に、各ウェルにグルコースを加えた培地#2で2mLの培地を交換して細胞を回収した。
  10. 16日目に、各ウェルに2mLの培地#3を用いて第2ラウンドの精製を行う。
  11. 19日目にグルコース培地#2を加えた2mLで細胞を回収する。
  12. 20日目に、ウェルを1mLのPBSで1回洗浄し、1mLの10xトリプシンを用いて37°Cで6分間細胞を解離させた。 インキュベーション後、細胞をウェル表面から15秒未満で単一細胞に持ち上げ、等量の培地#2で15mL円錐管に添加して酵素を中和する。細胞懸濁液を270 x gで3分間遠心分離 する
  13. 細胞ペレットを3mL培地#3に再懸濁する。細胞をカウントし、適切な量の培地#3を加えて、新しい基底膜マトリックス培地コーティングされた6ウェルプレートの各ウェルに合計〜300万個の細胞をプレート化する。再めっき後2日目に、培地を新鮮な2mL培地#2と交換し、凍結または将来の実験のために心筋細胞のトリプシン処理まで1日おきに2mL培地#2を補充する。

3. 内皮細胞分化とMACS

  1. 75%〜80%のiPSCコンフルエントで、プレートをPBS、1ウェルあたり2mLで洗浄する。
  2. 分化培地#1を6 μM CHIRで2 mLの分化培地と交換することにより、0日目に分化を開始する。
  3. 2日目に、培地を2 μM CHIRを有する2 mLの分化培地#1と交換する。
  4. 4日目に、培地を、20 ng bFGF-2、50 ng VEGF165、および20 ng BMP4を添加した2 mLのEGMと交換する。
  5. 6日目から10日目まで2日ごとに成長因子を添加した2mLのEGMで培地を交換してください。TGFβ阻害剤(SB431542)を8μM濃度で添加することは、内皮拡張を促進し、他の間葉起源細胞型の分化を抑制するために任意である。
  6. 12日目に、各ウェルを1mLのPBSでリンスし、続いて6ウェルプレートの各ウェルに1mLの10xトリプシンを用いて37°Cで8分間細胞解離することによって、MACSのステップを開始する。
  7. 50mL円錐管に等量のEGM培地を調製し、解離酵素を中和する。50 mL円錐管上に40 μmの細胞ストレーナーを置き、解離した細胞懸濁液をストレーナーに通す。2 ~ 3 個の解離ウェルごとにフィルターを変更します。
  8. 血球計数器または自動細胞カウンターを使用して0.4%トリパンブルーを使用して全生細胞を列挙する。
  9. 細胞懸濁液を300 x g でペレット化し、4°Cに設定した予備冷却遠心分離機で5分間反応させた。
  10. 上清を捨て、ステップ3.8の総カウントに基づいて適切な量の選別バッファーに細胞ペレットを再懸濁する。
    注: 全細胞 107 個あたり 80 μL の選別バッファーを追加します。
  11. 磁気ビーズ標識のために、107 細胞あたり20μLのFcRブロッキング試薬を添加し、5分間インキュベートする。
  12. 107細胞あたり20μLのCD144またはCD31マイクロビーズを加え、よく混合する。細胞懸濁液を暗所で4°Cで15分間インキュベートする。
  13. 20mLの選別バッファーを加えて標識細胞を洗浄し、4°Cに設定した予備冷却遠心分離機で細胞300 x g を5分間ペレット化する。
  14. 細胞ペレットを3mLの選別バッファーに再懸濁し、氷上に放置する。
  15. セパレーターノッチにカラムを配置して磁気分離カラムを作製する。
  16. 3 mL の選別バッファーですすぎでカラムを平衡化し、その流れを廃円錐管に集めます。
  17. すすぎバッファーが流れたら、細胞懸濁液を徹底的に再懸濁して凝集塊を壊し、細胞懸濁液をカラムに塗布します。
  18. 細胞懸濁液が流れた後、カラムを3mLの選別バッファーで3回洗浄し、標識されていない細胞を除去します。
  19. カラムを分離器から取り出し、CD144+/CD31+ 細胞溶出用の 15 mL 円錐管に入れます。
  20. 5 mL の選別バッファーをカラムに加え、磁気標識された細胞をプランジャーで直ちにフラッシュします。
  21. 血球計数計または自動細胞カウンターを使用して0.4%トリパンブルーを使用して生細胞数を決定します。
  22. 細胞懸濁液を300 x g で3分間予冷遠心分離機で遠心分離する。
  23. ステップ3.21の総カウントに基づいて、細胞ペレットを5〜8μMのTGFβ阻害剤(SB431542)で適切な量のEGMに再懸濁する。
  24. この継代0(P0)細胞を適切な細胞密度(4 x 104 cells/cm2)でプレコーティングされた0.2%ゼラチンプレート上にプレートします。
  25. P0およびP1については、TGFβ阻害剤と共に2日ごとに新鮮なEGMを培地に補充し続ける。P2から、細胞はTGFβ阻害剤を含まない内皮増殖培地中で培養することができる。

4. 心臓線維芽細胞分化

  1. iPSCが90%〜95%コンフルエントになるようにします。各ウェルを1mL PBSで洗浄する。
  2. 分化培地#1に2 mLを11 μM CHIRとともに加えることにより、0日目に分化を開始する。高感度iPSCラインの場合、濃度は9~10μMの間で変化し得る。
  3. 1日目に,お皿を観察します。〜30%〜40%の細胞がプレートに接着した状態で有意な細胞死を観察することは正常である。
  4. 3日目に、5μM IWR-1-endoを含む分化培地#1に2mLを加え、心臓前駆細胞の拡大を促進する。
  5. 4日目に、培地を2mLの心臓線維芽細胞分化培地と交換する。16日目まで2日ごとに新鮮な培地と交換してください。
  6. 18日目に、6ウェルプレートの各ウェルに1mLの10xトリプシンを用いて、37°Cで10分間細胞を剥離した。
  7. 細胞層を十分に破壊し、5%FBSを添加した等量のDMEM/F12培地を含む50mL円錐管内の70μmセルストレーナーに細胞懸濁液を通す。
  8. 血球計数計または自動細胞カウンターを使用して0.4%トリパンブルーを使用して生細胞数を決定します。
  9. 細胞懸濁液を300 x g で5分間遠心分離し、ペレットを得た。
  10. 最初の再めっきでは、細胞ペレットを適量の分化培地に再懸濁し、細胞密度(6 x 104 cells/cm2)で0.2%ゼラチンコーティングプレート上に90%コンフルエントになるまでプレートします。
  11. プレートを分割し、ゼラチンコーティングプレート上の10%血清を含む通常のDMEM/F12で心臓線維芽細胞を維持する。

5. 心臓微小組織カビの鋳造と細胞播種

  1. アガロースを100mLガラス瓶に入れた電子レンジで沸騰するまで溶かします。アガロースボトルをスプレーし、バイオセーフティキャビネットに入れます。アガロースを約3分間冷却します。
  2. 9 x 9アレイのシリコーンマイクロモールドに溶融アガロース700 μLのピペット。ピペッティング中に気泡を発生させないでください。
  3. 予め冷却された氷のブロックに金型を慎重に置き、アガロースのゲル化を加速します。
  4. アガロースがゲル化したら、半透明になることを確認します。マイクロモールドの縁の周りを慎重に曲げて、アガロースのレプリカを緩めます。次いで、レプリカを四方から静かに剥離し、アガロースレプリカをシリコーンマイクロモールドから剥離する。
  5. 81個の円形凹部(直径800μm;深さ800μm)を含むアガロースマイクロ組織トレイを滅菌12ウェルプレートに移す。
  6. 2mLのPBSをアガロースマイクロティッシュトレイに加え、顕微鏡下で捕捉された気泡または不規則な形状のウェルがないか検査する。
  7. アガローストレイを2mLの70%エタノールに一晩浸漬し、続いてバイオセーフティキャビネット内で1時間UV処理を行った。
  8. 使用前に、70%エタノールを除去し、蒸留水で2回洗浄し、2mLのPBSで最終洗浄した。
  9. iPSC-CM、iPSC-EC、およびiPSC-CFをトリプシン処理、中和、およびカウントし、細胞懸濁液を氷上に置きます。
  10. PBSをウェルおよび細胞播種チャンバーから、凹部に触れることなく慎重に取り外す。
  11. 新しいチューブに、iPSC-CM、iPSC-EC、およびiPSC-CFをそれぞれ7:2:1の比率で混合し、最終細胞密度を106 細胞/mLに達成します。細胞密度が高いほど、ミクロ組織が大きくなります。
    注: 2 x 106 セル/mL を超えないようにしてください。
  12. 200μLの細胞懸濁液を播種チャンバーに滴下して慎重に加える。
  13. 細胞をCO2 インキュベーター内で37°Cで2時間沈降させる。
  14. アガロースモールドを囲む微細組織作製培地を加えて、内部チャンバーの表面を覆うだけです。
  15. 24時間後、細胞は自己集合し、円形の凹部で有意にコンパクトになる。メンテナンスのために2日ごとに新鮮な培地と交換してください。

6. 免疫染色のための細胞および心臓微小組織の固定および透過処理

  1. 個々の細胞タイプごとに、基底膜マトリックス培地またはゼラチンコーティングチャンバースライド(約2.5-3 x 105 細胞/mL)上で細胞を別々に培養する。心臓ミクロ組織は、円形の凹部から静かに洗い流すことによって、15mLの円錐形のチューブに集めることができる。
  2. 培地を吸引し、細胞または微小組織を1mLのPBSですすいでください。その後、4.2% PFAを含む固定緩衝液でチャンバースライドを20分間、ミクロ組織を室温で1時間固定する。
  3. PFAを吸引し、15mL円錐管にチャンバースライド用に5〜7分間、微小組織用に20分間、透過処理溶液(PBS中の0.25%Triton X-100)1mLを加える。
    注:このステップ以降、サンプルはベンチトップのロッキングプラットフォーム上で静かに揺らすことができます。
  4. 透過処理液を吸引し、2〜3mLのPBSで1回すすいでください。
  5. 細胞を500~1,000 μLのブロッキング溶液(2%~5%正常ヤギ血清またはロバ血清)とともにチャンバースライドで少なくとも1時間、微小組織で3~4時間インキュベートします。
  6. 細胞または心臓ミクロ組織を、試料を覆うのに十分なブロッキング溶液中に調製した結合抗体と共にインキュベートする。抗心臓トロポニン-T(cTnT2)(1:50)、抗CD31(1:75)、および抗DDR2/ビメンチン(1:50)とともにチャンバースライドで1時間、心臓ミクロ組織については4°Cで一晩インキュベートする。
  7. チャンバースライドを500 μL 0.1% Tween-20で3回、各洗浄とPBSによる最終洗浄の間に5分間洗浄する。
  8. 心臓ミクロ組織については、2mLの0.1%Tween-20で5回洗浄し、各洗浄の間に20分間の持続時間を設けた。最終洗浄ステップをさらに20分間実行します。
  9. 共焦点顕微鏡検査の前に、細胞またはミクロ組織を4',6-ジアミジノ-2-フェニルインドール(DAPI)(1μg/mL)とともにインキュベートする。
  10. 心臓ミクロ組織の場合は、35mmのガラス底皿に慎重に移し、PBSを加えてマイクロ組織を沈めます。
  11. 3Dイメージングでは、マイクロ組織の20倍または40倍の油浸対物ゲインセンターフォーカスを使用し、各蛍光色素分子の露光パラメータを調整します。
  12. Zスタックを取得するには、スライス間隔5~10μmで合計撮影深度100~200μmのライブモードで最初と最後の座標を設定します。

7. 心臓ミクロ組織の消化とフローサイトメトリーのための細胞の調製

  1. ミクロ組織を消化するには、ワイドボア 1 mL ピペットチップを使用して、Medium #1 のマイクロ組織を円形の凹部から 15 mL の円錐形チューブに静かに洗い流します。
  2. 微小組織が沈降して培地を注意深く吸引し、細胞または微小組織を1mLのPBSですすぎ、200〜300μLの酵素消化緩衝液を37°Cで20分間加える。 10分間で、微小組織を1分間穏やかに混合し、残りの時間、37°Cで再度インキュベートする。
  3. インキュベーション後、通常の1mLピペットチップを使用して微小組織を激しく混合し、濁った細胞懸濁液を得た。
  4. マイクロ組織が単一細胞に十分に消化されたら、直ちに5%FBSを含む5mLの培地で細胞懸濁液を中和し、40μmのセルストレーナーを通して細胞懸濁液を緊張させる。細胞の総数をカウントし、単一細胞懸濁液を300 x g で4°Cで5分間遠心分離した。
  5. 上清を吸引し、1 x 105-1 x 106 細胞をFITC Annexin Vおよび100 μg/mLのヨウ化プロピジウム(PI)またはTo-Pro3死細胞排除色素と共に100 μLのアネキシン結合バッファーに氷上で10分間再懸濁する。
  6. インキュベーション後、300 μLのアネキシン結合緩衝液を細胞懸濁液に加え、フローサイトメトリー分析のために丸底FACSチューブに移す。選択した蛍光色素には、正しいレーザーと発光フィルターを使用してください。
  7. 固定細胞を用いた細胞表面マーカーの定量のために、ステップ6.2および6.3に記載されるように細胞ペレットの固定および透過処理を行う。
  8. 透過処理後、細胞ペレットをすすぎ、細胞をそれぞれの結合抗体と共に1時間インキュベートする。細胞ペレットを4 mL FACS緩衝液(PBS中の2% FBS)で洗浄し、300 x g で3分間遠心分離する。洗浄ステップを 2 回繰り返します。
  9. フローサイトメトリー分析のために細胞を200~300 μL FACSバッファーに再懸濁する。
  10. 染色されていないサンプルで順方向散乱特性と側面散乱特性を調整し、各蛍光色素分子にアイソタイプコントロールを使用してレーザー電圧を調整することを検討してください。データ分析のために少なくとも 20,000 個のイベントを収集します。

8. 自発的に鼓動する心臓微小組織の収縮解析

  1. 心臓ミクロ組織のビデオを録画して、少なくとも3つのビートをキャプチャします。録画解像度をフレームレート >30 フレーム/秒) で少なくとも 1280 x 720 ピクセルに設定し、 にビデオを保存します。AVI形式。
  2. MATLAB環境でMotionGUIスクリプト11 を実行して、ユーザーインターフェイスを起動します。
  3. を見つけます。ビデオをロードするためのフォルダ内のAVIファイルの場所。次に、ビデオがキャプチャされたフレームレートを入力パネルに入力します。
  4. 高度な入力パネルでは、解像度とキャプチャ倍率に基づいてピクセルサイズを指定できます。
  5. 適切なマクロブロックピクセルサイズ(デフォルトは16)を指定し、ミクロ組織収縮の強さに応じて検出可能なピクセル運動をすることができる。
  6. パラメータを調整したら、[ 動きベクトルの取得] をクリックして解析を開始します。
  7. AOI を選択」 ラジオボタンで関心のある領域を選択し、円形のくぼみ内の単一のマイクロ組織を囲む領域を除外します。
  8. 関数 Map Time Ave を使用して、X 軸と Y 軸で検出された動きに基づいて平均収縮ヒートマップを生成します。
  9. ピークトレースデータの場合は、収縮 データの取得 関数を使用して、収縮ピークと緩和ピークを自動的に測定します。
  10. 信号対雑音比が低い場合は、ピーク高さと距離のしきい値を適用して、最大収縮速度(青い点)と最大緩和速度(赤い三角形)に正しく注釈を付けます。
  11. 正しいしきい値を設定した後、[ ピークを分析] を選択して、ビート レートとビート間隔で収縮と緩和の値を取得します。
  12. 統計分析のために、少なくとも25個の個々の微小組織から測定値を取得します。

結果

iPSC由来のCM、EC、CFの免疫染色およびフローサイトメトリー特性評価
iPSC-CM、iPSC-EC、およびiPSC-CFからなる心臓ミクロ組織を生成するために、3つの細胞型すべてを分化させ、個々に特徴付ける。iPSCからiPSC-CMへのインビトロ分化は、過去数年間で改善されています。ただし、iPSC-CMの収率と純度はラインごとに異なります。現在のプロトコルでは、純度75%を超えるiPSC-CMが生?...

ディスカッション

分化前のiPSC-CM、iPSC-EC、およびiPSC-CFから心臓ミクロ組織を生成するためには、心臓ミクロ組織内での接触阻害細胞圧縮後の細胞数をよりよく制御するために、高純度の培養物を得ることが不可欠である。最近、ジャコメッリら。al.18 は、iPSC-CM、iPSC-EC、およびiPSC-CFを用いた心臓微小組織の作製を実証している。記載された方法を用いて生成された心臓微小組織は、〜5,000個?...

開示事項

J.C.W.はKhloris Biosciencesの共同設立者ですが、ここで紹介した研究は完全に独立しているため、競合する利害関係はありません。他の著者は競合を報告していません。

謝辞

アマンダ・チェイス博士の原稿に関する有益なフィードバックに感謝します。資金援助は、カリフォルニア大学T29FT0380(D.T.)および27IR-0012(J.C.W.)のタバコ関連疾患研究プログラム(TRDRP)によって提供された。米国心臓協会20POST35210896(香港)および17MERIT33610009(J.C.W.);国立衛生研究所(NIH)R01 HL126527、R01 HL123968、R01 HL150693、 R01 HL141851、およびNIH UH3 TR002588(J.C.W)。

資料

NameCompanyCatalog NumberComments
12-well platesFisher Scientific08-772-29
3D micro-moldsMicrotissues12-81 format
6-well platesFisher Scientific08-772-1B
AutoMACS Rinsing SolutionThermo Fisher ScientificNC9104697
B27 Supplement minus InsulinLife TechnologiesA1895601
B27 Supplement plus InsulinLife Technologies17504-044
BD CytofixBD Biosciences554655
BD Matrigel, hESC-qualified matrixBD Biosciences354277
Cardiac Troponin T AntibodyMiltenyi130-120-403
CD144 (VE-Cadherin) MicroBeadsMiltenyi130-097-857
CD31 AntibodyMiltenyi130-110-670
CD31 MicrobeadsMiltenyi130-091-935
CHIR-99021SelleckchemS2924
DDR2Santa Cruz Biotechnologysc-81707
Dead Cell Apoptosis Kit with Annexin V FITC and PIThermo Fisher ScientificV13242
Dispase IMillipore Sigma4942086001
DMEM, high glucose (4.5g/L) no glutamine medium11960044
DMEM/F-12 basal mediumGibco11320033
Dulbecco's phosphate buffered saline (DPBS), no calcium, no magnesiumLife Technologies14190-136
EGM2 BulletKitLonzaCC-3124
Fetal bovine serumLife Technologies10437
FibroLife Serum-Free Fibroblast LifeFactors KitLifeLIne Cell TechnologyLS-1010
Glucose free RPMI mediumLife Technologies11879-020
Goat serumLife Technologies16210-064
Human FGF-basicThermo Fisher Scientific13256029
Human VEGF-165PeproTech100-20
IWR-1-endoSelleckchemS7086
Liberase TLMillipore Sigma5401020001
LS Sorting ColumnsMiltenyi130-042-401
MACS BSA Stock solutionMiltenyi130-091-376
MACS Rinsing BufferMiltenyi130-091-222
MidiMACS SeparatorMiltenyi130-042-302
RPMI mediumLife Technologies11835055
SB431542SelleckchemS1067
TO-PRO 3Thermo Fisher ScientificR37170
Triton X-100Millipore SigmaX100-100ML
TrypLE Select 10XThermo Fisher Scientificred
Vimentin Alexa Fluor® 488-conjugated AntibodyR&D SystemsIC2105G

参考文献

  1. Neofytou, E., O'Brien, C. G., Couture, L. A., Wu, J. C. Hurdles to clinical translation of human induced pluripotent stem cells. Journal of Clinical Investigation. 125 (7), 2551-2557 (2015).
  2. Lancaster, M. A., Knoblich, J. A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science. 345 (6194), 1247125 (2014).
  3. Liu, C., Oikonomopoulos, A., Sayed, N., Wu, J. C. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development. 145 (5), 156166 (2018).
  4. Yin, X., Mead, B. E., Safaee, H., Langer, R., Karp, J. M., Levy, O. Engineering stem cell organoids. Cell Stem Cell. 18 (1), 25-38 (2016).
  5. Giacomelli, E., et al. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development. 144 (6), 1008-1017 (2017).
  6. Kurokawa, Y. K., George, S. C. Tissue engineering the cardiac microenvironment: Multicellular microphysiological systems for drug screening. Advances in Drug Delivery Reviews. 96, 225-233 (2016).
  7. Cartledge, J. E., et al. Functional crosstalk between cardiac fibroblasts and adult cardiomyocytes by soluble mediators. Cardiovascular Research. 105 (3), 260-270 (2015).
  8. Ravenscroft, S. M., Pointon, A., Williams, A. W., Cross, M. J., Sidaway, J. E. Cardiac non-myocyte cells show enhanced pharmacological function suggestive of contractile maturity in stem cell derived cardiomyocyte microtissues. Toxicology Science. 152 (1), 99-112 (2016).
  9. Ieda, M., et al. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Developmental Cell. 16 (2), 233-244 (2009).
  10. Brutsaert, D. L. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiological Reviews. 83 (1), 59-115 (2003).
  11. Huebsch, N., et al. Automated video-based analysis of contractility and calcium flux in human-induced pluripotent stem cell-derived cardiomyocytes cultured over different spatial scales. Tissue Engineering Part C Methods. 21 (5), 467-479 (2015).
  12. Burridge, P. W., et al. Chemically defined generation of human cardiomyocytes. Nature Methods. 11 (8), 855-860 (2014).
  13. Gu, M., et al. Pravastatin reverses obesity-induced dysfunction of induced pluripotent stem cell-derived endothelial cells via a nitric oxide-dependent mechanism. European Heart Journal. 36 (13), 806-816 (2015).
  14. Williams, I. M., Wu, J. C. Generation of endothelial cells from human pluripotent stem cells. Arteriosclerosis, Thrombosis and Vascular Biology. 39 (7), 1317-1329 (2019).
  15. Zhang, H., Shen, M., Wu, J. C. Generation of quiescent cardiac fibroblasts derived from human induced pluripotent stem cells. Methods in Molecular Biology. , 1-7 (2020).
  16. Zhang, H., et al. Generation of quiescent cardiac fibroblasts from human induced pluripotent stem cells for in vitro modeling of cardiac fibrosis. Circulation Research. 125 (5), 552-566 (2019).
  17. Zhang, J., et al. Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors. Nature Communications. 10 (1), 2238-2315 (2019).
  18. Giacomelli, E., et al. Human-iPSC-derived cardiac stromal cells enhance maturation in 3d cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell Stem Cell. 26 (6), 862-879 (2020).
  19. Burridge, P. W., Holmström, A., Wu, J. C. Chemically defined culture and cardiomyocyte differentiation of human pluripotent stem cells. Current Protocols in Human Genetics. 87 (1), 1-15 (2015).
  20. Lian, X., et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nature Protocols. 8 (1), 162-175 (2013).
  21. Buikema, J. W., et al. Wnt activation and reduced cell-cell contact synergistically induce massive expansion of functional human iPSC-derived cardiomyocytes. Cell Stem Cell. 27 (1), 50-63 (2020).
  22. Feyen, D. A. M., et al. Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes. Cell Reports. 32 (3), 107925 (2020).
  23. Karbassi, E., et al. Cardiomyocyte maturation: Advances in knowledge and implications for regenerative medicine. Nature Reviews Cardiology. 17 (6), 341-359 (2020).
  24. Li, Z., Hu, S., Ghosh, Z., Han, Z., Wu, J. C. Functional characterization and expression profiling of human induced pluripotent stem cell- and embryonic stem cell-derived endothelial cells. Stem Cells Development. 20 (10), 1701-1710 (2011).
  25. Lian, X., et al. Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Report. 3 (5), 804-816 (2014).
  26. Gu, M. Efficient differentiation of human pluripotent stem cells to endothelial cells. Current Protocols in Human Genetics. 98 (1), 64 (2018).
  27. Acharya, A., et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development. 139 (12), 2139-2149 (2012).
  28. Wessels, A., et al. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Development Biology. 366 (2), 111-124 (2012).
  29. Ali, S. R., et al. Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation. Circulation Research. 115 (7), 625-635 (2014).
  30. McMurtrey, R. J. Analytic and numerical models of oxygen and nutrient diffusion, metabolism dynamics, and architecture optimization in three-dimensional tissue constructs with applications and insights in cerebral organoids. Tissue Engineering Part C Methods. (3), 221-249 (2015).
  31. Thomas, D., O'Brien, T., Pandit, A. Toward customized extracellular niche engineering: progress in cell-entrapment technologies. Advanced Materials. 30 (1), 1703948 (2018).
  32. Thomas, D., Shenoy, S., Sayed, N. Building Multi-dimensional induced pluripotent stem cells-based model platforms to assess cardiotoxicity in cancer therapies. Front Pharmacol. 12, 39 (2021).
  33. Rhee, J. -. W., et al. Modeling secondary iron overload cardiomyopathy with human induced pluripotent stem cell-derived cardiomyocytes. Cell Reports. 32 (2), 107886 (2020).
  34. Paik, D. T., Cho, S., Tian, L., Chang, H. Y., Wu, J. C. Single-cell RNA sequencing in cardiovascular development, disease, and medicine. Nature Reviews Cardiology. 17 (8), 457-473 (2020).
  35. Nguyen, Q. H., Pervolarakis, N., Nee, K., Kessenbrock, K. Experimental considerations for single-cell RNA sequencing approaches. Frontiers in Cell and Developmental Biology. 6, 108 (2018).
  36. Lau, E., Paik, D. T., Wu, J. C. Systems-wide approaches in induced pluripotent stem cell models. Annual Reviews in Pathology. 14 (1), 395-419 (2019).
  37. Maddah, M., et al. A non-invasive platform for functional characterization of stem-cell-derived cardiomyocytes with applications in cardiotoxicity testing. Stem Cell Report. 4 (4), 621-631 (2015).
  38. Sala, L., et al. Musclemotion: A versatile open software tool to quantify cardiomyocyte and cardiac muscle contraction in vitro and in vivo. Circulation Research. 122 (3), 5-16 (2018).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

169 iPSC

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved