Method Article
古典的な部位特異的突然変異誘発の限界を克服するために、特定の修飾を有するプロリン類似体をいくつかの蛍光タンパク質に組み込んだ。我々は、水素をフッ素で置換するか、またはプロリン残基中の二重結合による単置換(「分子手術」)が、その折り畳みおよび光との相互作用を含む基本的なタンパク質特性にどのように影響するかを示す。
残りの19個の正準アミノ酸のいずれかによる従来の部位特異的変異誘発によるタンパク質中のプロリン(Pro)残基の置換は、しばしばタンパク質のフォールディング、特に緑色蛍光タンパク質および関連変異体における発色団成熟に有害である。合理的な代替法は、 全ての Pro残基が類似体によって 残基特異的 に置換されるようにタンパク質の翻訳を操作することであり、これは選択圧取り込み(SPI)として知られる方法である。内蔵の化学修飾は、測定可能な変化を細かく解剖したり、さまざまなタンパク質特性を合理的に操作したりするための一種の「分子手術」として使用できます。ここで、この研究は、緑色蛍光タンパク質(GFP)のスペクトル変異体の典型的なβバレル構造の組織におけるプロリンの役割を研究するためのSPI法の有用性を実証しています:それらの配列中に10〜15個のプロリン:増強された緑色蛍光タンパク質(EGFP)、NowGFP、およびKillerOrange。プロ残基は、個々のβ鎖間の連結切片に存在し、バレル足場の閉鎖蓋を構成し、したがって、発色団を水から絶縁する、すなわち蛍光特性を担う。(4R)-フルオロプロリン(R-Flp)、(4S)-フルオロプロリン(S-Flp)、4,4-ジフルオロプロリン(Dfp)、および3,4-デヒドロプロリン(Dhp)を用いた選択圧取り込み実験を、プロリン-栄養要求性 大腸菌 株を発現宿主として用いて行った。我々は、S-FldpおよびDhpを有する蛍光タンパク質が活性(すなわち、蛍光性)であるのに対し、他の2つの類似体(DfpおよびR-Flp)は機能不全のミスフォールディングタンパク質を産生することを見出した。UV-Vis吸収および蛍光発光プロファイルの検査では、Pro類似体を含むタンパク質に特徴的な変化はほとんど見られませんでした。EGFP変異体におけるフォールディング動態プロファイルの検討は、S-Flpの存在下での加速リフォールディングプロセスを示したが、このプロセスはDhpを含むタンパク質における野生型と類似していた。この研究は、SPI法がタンパク質残基の微妙な修飾を原子レベルで(「分子手術」)生成する能力を示しており、これは関心のある他のタンパク質の研究に採用することができる。これは、βバレル蛍光タンパク質のクラスにおける折り畳みおよび分光特性に関する密接な化学的類似体によるプロリン置換の結果を示す。
古典的な部位特異的突然変異誘発は、DNAレベルでのコドン操作による既存の遺伝子コードタンパク質配列の順列を可能にする。タンパク質の折り畳みと安定性を研究するためには、類似のアミノ酸を類似の対応物で置き換えることが望ましいことがよくあります。しかし、従来のタンパク質突然変異誘発は、標準的な遺伝暗号レパートリーに存在するSer/Ala/Cys、Thr/Val、Glu/Gln、Asp/Asn、Tyr/Pheなどの正準アミノ酸間の構造的に類似した置換に確実に制限されている。一方、Trp、Met、His、Proなどの他の正準アミノ酸にはそのような可能性はなく、タンパク質1においてしばしば必須の構造的および機能的役割を果たす。タンパク質の高度に特異的な内部構造とその折り畳みプロセスの文脈でこれらの相互作用を研究するための理想的なアプローチは、無停止のアイソステリック修飾を生成することです。実際、非正準アミノ酸(ncAAs)としても知られるこれらの正準アミノ酸のアイソステリックアミノ酸類似体がタンパク質に挿入されると、「原子変異」として知られるH/F、CH2/S/Se/Teなどの単一原子または原子団のレベルでも微妙な変化が可能になる2。このような「分子手術」は、単一の原子または原子群の交換のみから生じる特性を有する改変タンパク質を生成し、好都合な場合には分析することができ、検出された変化を合理化することができる。このようにして、タンパク質の折り畳みと構造を研究するためのタンパク質合成の範囲は、古典的なDNA突然変異誘発をはるかに超えて拡張されます。部位特異的変異誘発によって生成されたタンパク質は通常「変異体」と呼ばれるが、正規のアミノ酸を置換したタンパク質は「変異体」3、「アロタンパク質」4、または「タンパク質同族体」5と呼ばれる。
緑色蛍光タンパク質(GFP)は、海洋生物Aequorea victoriaで最初に同定され、紫外から青色への光6,7にさらされると明るい緑色蛍光を示す。今日、GFPは、蛍光顕微鏡による細胞内の遺伝子発現およびタンパク質局在の日常的な視覚化のための高感度標識ツールとして一般的に使用されている。GFPはまた、様々な生物物理学的8、9、10および生物医学的11,12の研究、ならびにタンパク質工学13、14、15において有用であることが証明されている。GFP構造の厳密な解析により、様々な安定性および蛍光極大を特徴とする多数の変異体の作製が可能となった16,17。細胞生物学および分子生物学で使用されるGFP変異体のほとんどは、溶液中および結晶中の単量体タンパク質である18。それらの主要な構造組織は、系統学的起源とは無関係にGFPファミリーのすべてのメンバーにとって典型的であり、いわゆるβバレルを形成する11本のβ鎖から成り、一方、ねじれたαらせんがバレルの中心を通って走り、発色団を帯びている(図1A)。発色団の自己触媒的成熟(図1B)には、それを取り囲む側鎖をタンパク質の中心位置に正確に配置する必要があります。これらの側鎖の多くは、他のGFP変異体19において高度に保存されている。Aequorea victoriaなどのクラゲ由来のほとんどの蛍光タンパク質では、緑色発光発色団は、Tyr66のフェノール環とイミダゾリノンの5員複素環構造を含む2つの芳香環で構成されています(図1B)。発色団は、タンパク質マトリックスに適切に埋め込まれると、タンパク質全体の特徴的な蛍光の原因となります。これは、構造体の中央に位置し、一方、バレル構造は、水性媒体20からそれを絶縁する。発色団のバルク水への曝露は、蛍光消光、すなわち蛍光21の損失をもたらすであろう。
バレル様構造の適切な折り畳みは、蛍光消光22から発色団を保護するために不可欠である。プロリン(Pro)残基は、GFP23の構造組織において特別な役割を果たす。β鎖をサポートできないため、それらはタンパク質構造全体を維持する責任がある連結ループを構成する。驚くことではないが、10〜15個のプロリン残基が 、Aequorea-および Anthoathecata由来GFPsの両方に見られる。それらのいくつかは、他のタイプの蛍光βバレルタンパク質において高度に保存されている。プロリンは、その独特の幾何学的特徴のために折り畳み特性に重大な影響を与えることが期待されています。例えば、 エクオレア由来GFPsでは、10個のプロリン残基のうち(図2A)、9個の トランス型および1個のみが シス型ペプチド結合を形成する(Pro89)。Pro58は必須であり、すなわち、残りの19個の正準アミノ酸と交換可能ではない。この残基は、Trp57残基の正しい位置決めの原因である可能性があり、これは発色団成熟および全体的なGFPフォールディング24に重要であることが報告されている。3つのプロリン残基(Pro54、Pro56、Pro58)およびTrp57を有するフラグメントPVPWPは、 図1AからのGFP構造における「下蓋」の本質的な部分である。PVPWP構造モチーフは、シトクロムおよび真核生物の電位活性化カリウムチャネル25などのいくつかのタンパク質に見られる。位置75および89におけるプロリンからアラニンへの置換もまた、タンパク質発現およびフォールディングに有害であり、発色団成熟を消失させる。Pro75およびPro89は、発色団を埋め込む「上蓋」の一部であり(図1A)、11本鎖βバレル蛍光タンパク質23にわたって保存されている。これら2つの「蓋」は、安定な三次構造が部分的に破壊された場合でも、発色団を水性溶媒から除外しておく26。このような特定の分子構造は、例えば、水、酸素、または他の拡散性リガンドによる衝突(動的)蛍光消光から蛍光色素を保護する。
GFP構造の分子工学を行うためには、タンパク質の一次構造にアミノ酸置換を導入する必要があります。GFPに対して多数の変異が行われており、高い安定性、高速で信頼性の高いフォールディング、および可変蛍光特性を有する変異体が提供されている17。それにもかかわらず、ほとんどの場合、プロリン残基の変異は、残りの19個の正準アミノ酸のいずれもプロリン残基27の立体構造プロファイルを適切に復元することができないという事実のために、危険なアプローチと考えられる。したがって、プロリン残基が、プロリン類似体28と呼ばれる他のプロリンベースの構造と置換される代替アプローチが開発されている。そのユニークな環状化学構造のために、プロリンは2つの特徴的な立体構造遷移を示す(図1C):1)主にφねじり角に影響を与える骨格の組織を伴う速いプロセスであるプロリンリングパッカリング、および2)ペプチド結合シス/トランス異性化、ωねじり角を介して骨格折り畳みに影響を与える遅いプロセス。その遅い性質のために、後者の遷移は、一般に、タンパク質全体の折り畳み過程における律速ステップの原因である。いくつかのプロリン残基の周りのペプチド結合シス/トランス異性化は、GFP変異体の折り畳みにおける遅いステップを特徴とすることが以前に示されている。例えば、Pro89におけるシス-ペプチド結合の形成は、トランスからシス29への結合遷移に依存するため、フォールディングの過程における遅いステップを特徴とする。Pro89を全トランスペプチドループで置換した後、すなわちシス-トランス異性化イベント30を廃止することによって、より速いリフォールディングを達成することができる。シス/トランス異性化に加えて、パッカー転移はまた、タンパク質内部27,31内の骨格組織およびパッキングに起因するタンパク質折り畳みの深い変化を生じ得る。
化学修飾は、プロリン残基の固有の立体構造遷移の変化をもたらし、それによってタンパク質のフォールディング能力に影響を及ぼす。特定のプロリン類似体は、折り畳み特性の操作および研究を可能にするため、タンパク質におけるプロリン置換の特に魅力的な候補である。例えば、(4R)-フルオロプロリン(R-Flp)、(4S)-フルオロプロリン(S-Flp)、4,4-ジフルオロプロリン(Dfp)、および3,4-デヒドロプロリン(Dhp)は、分子体積および極性32の点でプロリンと最小限に異なる4つの類似体(図1D)である。同時に、各アナログは別個のリングパッカーを示す:S−FrpはC4エンドパッカーを安定化させ、R−FrpはC4−エキソパッカーを安定化させ、Dfpは明らかなパッカー選好を示さず、一方Dhpはパッカリングを消失させる(図1D)33。タンパク質構造においてこれらの類似体を使用することによって、プロリン残基の立体構造遷移を操作することができ、そしてこれを用いて、得られるGFP変異体の特性に影響を及ぼす。
この研究では、選択圧取り込み法(SPI、図3)34を用いて、指定されたプロリン類似体のセット(図1D)をGFP変異体の構造に組み込むことに着手しました。アミノ酸残基をそれらの最も近い等構造類似体で置換することは、タンパク質設計35,36において応用されたバイオテクノロジーの概念である。したがって、モデルタンパク質におけるプロリン類似体の効果は、タンパク質工学37においてツールとして役立つそれらの可能性を示す。所望の類似体を含むタンパク質の産生は、プロリン(プロリン・要求性)を産生することができない改変大腸菌株において行った。したがって、それらは、タンパク質生合成38の過程において基質の置換を受け入れることを余儀なくされ得る。プロリンのこのグローバルな置換は、tRNAと適切なアミノ酸40とのエステル化を触媒する重要な酵素である内因性アミノアシルtRNA合成酵素39の天然基質柔軟性によって可能になる。一般に、図3に概説されるように、細胞増殖は、中間対数増殖段階に達するまで、定義された培地中で行われる。次のステップでは、置換されるアミノ酸は、発酵中に発現系から細胞内で枯渇し、続いて所望の類似体またはncAAによって交換される。次いで、標的タンパク質発現は、残基特異的非正準アミノ酸取り込みのために誘導される。同族アミノ酸とその類似体との置換は、プロテオーム全体の方法で起こる。この副作用は宿主株の増殖に悪影響を及ぼす可能性があるが、標的タンパク質産生の質はほとんど影響を受けず、なぜなら、組換え発現において、細胞資源は主に標的タンパク質41、42の生産に向けられるからである。したがって、厳密に調節された誘導性発現系および強力なプロモーターは、高い取り込み効率43にとって極めて重要である。我々のアプローチは、センスコドンに応答したncAAの複数残基特異的組み込み(センスコドン再割り当て)に基づいており、それによって、標的遺伝子内で、Proアナログ挿入のための位置の数を部位特異的変異誘発を介して操作することができる44。同様のアプローチが、抗菌特性を有する組換えペプチドの調製に関する我々の以前の報告においても適用された45。本研究では、すべてのプロリン残基を関連類似体に置換するSPI法を適用し、標準的なアミノ酸レパートリーで合成されたタンパク質には存在しない明確な物理化学的性質を有すると期待されるタンパク質を作製した。得られた変異体のフォールディングおよび蛍光プロファイルを特徴付けることによって、GFPの変異体における原子置換の効果を示すことを目指している。
1. 有能な栄養要求性 大腸菌 細胞への発現プラスミドの導入
組換え野生型蛍光タンパク質(標準的なプロリンを保有)の生産およびプロリン類似体(S-Flp、R-Flp、Dfp、Dhp)を有する蛍光タンパク質を製造するための選択圧取り込み(SPI)の手順
固定化金属イオンアフィニティークロマトグラフィー(IMAC)によるタンパク質試料の精製手順
4. SDS-PAGEサンプル調製
5. タンパク質変異体の蛍光発光
6. EGFP変異体の変性およびリフォールディング
研究の開始時に、親GFPアーキテクチャを共有する3つの異なる蛍光タンパク質変異体を選択しました。最初に選択されたタンパク質はEGFPであり、これはPhe64Leu/Ser65Thr変異を含むクラゲAequorea victoriaからの元のGFPに由来する操作された変異体である。2番目に選択されたタンパク質はNowGFP51、60であった。それはまた、先行する蛍光タンパク質を介したいくつかのステップにおける突然変異誘発によって誘導されるA. victoria GFPの変異体でもある。現在GFPには、その直前の蛍光タンパク質「セルリアン」と比較して18の変異が含まれています61。次に、「セルリアン」タンパク質は、増強シアン蛍光タンパク質(ECFP)62,63の誘導体であり、これは、実験室での進化によって以前に選択され、トリプトファンベースの発色団を含むタンパク質である。EGFPとNowGFPはどちらも細胞生物学や生物物理学の研究で広く使用されており、その構造には10個の保存されたプロリン残基が含まれています。さらに、NowGFPは、位置230に11番目のプロリン残基を有し、これは、このタンパク質変異体の広範な変異歴のために現れた。選択された第3のタンパク質は、キラーオレンジ蛍光タンパク質64、65であった。ヒドロゾアン属アントアテカタ由来のクロモタンパク質anm2CPの誘導体である。タンパク質配列は15個のプロリン残基を含み、発色団はチロシン残基ではなくトリプトファンに基づいている。高分解能X線構造は、選択された3つのタンパク質すべてについて報告されている(図2)51、65、66。
第1のステップにおいて、プロリン類似体(図1D)を、選択圧取り込み(SPI、手順のスキームを図3に与える)によって3つのモデルタンパク質(EGFP、NowGFP、およびKillerOrange)のすべてのプロリン位置に組み込んだ。装置的には、プロリン要求性大腸菌K12株JM8367をプロリンおよび類似体の存在下でのタンパク質の発現に使用し(図1D)、それぞれ野生型および改変タンパク質を生じた。天然タンパク質を発現する細胞からのペレットおよびS-FlpおよびDhpを有する変異体は、無傷の発色団のために典型的な明るい色を有していたが、R-FrpおよびDfpを含む変異体は無色のままであり、封入体における折り畳まれていないタンパク質のミスフォールディングおよび沈着を示す(図4A)。発現サンプルのSDS-PAGE分析により、不溶性R-Flp含有タンパク質の存在が確認され(図4B-D)、さらなる調査は不可能でした。これは本研究の範囲を超えているが、タンパク質溶解性およびミスフォールディングの問題は、インビトロリフォールディング手順68によってある程度緩和され得ることに留意されたい。対照的に、天然タンパク質ならびにS-Flp-およびDhp担持変異体は、主に可溶性画分において見出された(図4B-D)。野生型、ならびにS-Flp-およびDhp含有変異体は、蛍光研究においてさらに単離および特徴付けられる可能性がある。可溶性タンパク質を固定化金属イオンアフィニティークロマトグラフィー(IMAC)で精製し、EGFPでは20~30mg/L、NowGFPでは60~80mg、KillerOrangeでは培養量が得られ、野生型タンパク質と改変タンパク質の収量は非常によく似ていました。液体クロマトグラフィー-質量分析(LC-MS)連成分析により、この方法で得られた分離株の予想される同一性および純度が確認されました(図5)。質量スペクトルにおいて、S-Frpによる各プロリン置換は、配列中の各プロリン残基当たり+18Daシフトを生じ、一方、プロリンからDhpへの置換では、シフトは残基当たり−2Daであった。
次のステップでは、親蛍光タンパク質の分光特性に対する非正準プロリン類似体の取り込みの潜在的な影響を分析するために、光吸収スペクトルおよび発光スペクトルを記録した(図6)。UV-Vis吸収スペクトルは、芳香族残基、チロシン、およびトリプトファンについて280nm前後の典型的なバンド特性を示し、発色団吸光度はEGFPについては488nm、NowGFPについては493nmで見出された(図6A、B)。KillerOrangeでは、発色団吸光度領域は2つのバンド(図6C)で構成され、これは複雑な発色団の2つの可能な構成状態および電荷状態に対応する。510nm付近のバンドは、高い量子収率49、65で蛍光が発生する状態として知られている。プロリン置換変異体では、以下のことが観察された:Dhpの取り込みはEGFPおよびNowGFPの吸光度スペクトルを変化させなかったが、S−Flpは増強されたUV吸収を生じた。後者は、トリプトファン残基微小環境、特にPVPWPモチーフ中の3つのS−Fldに挟まれたTrp57(図6A、B)69の誘導された差異によって説明することができる。しかし、より高いUV吸収についてのより些細な説明は、不適切に折り畳まれたタンパク質の画分の増加に由来する可能性がある。タンパク質の濃度は吸光度特徴の定量によって評価されたので、不適切に成熟した発色団を有するタンパク質の存在は吸光度を増加させることができるが、この画分は全体濃度にカウントされない(図6A、B)。この仮説を支持するために、我々は、S-Flp含有EGFPが、親タンパク質におけるより高い値(1.57)と比較して、トリプトファンとチロシンを合わせた吸光度(ε(CRO)/ε(Tyr+Trp)= 0.96)に対する発色団の比が顕著に減少することを観察した(表2)70。S-Flp含有EGFPにおける非蛍光画分の存在は、タンパク質特性のさらなる分析において重要な寄与因子となるであろう。S-Flpを含有するKillerOrange変異体では、発色団バンドの赤方偏移とともに吸光度の増加が観察された。この事実は、発色団形成が大きな蛍光量子収率を有する構成を好むことを示した(図6C)。
続いて、対応する最大吸光度波長での励起時に記録されたタンパク質の蛍光スペクトルを分析した。結果は、プロリンおよび置換体、S-FlcおよびDhpを有する検査された蛍光タンパク質変異体について、スペクトルが本質的に同一であったことを示している。この結果は、いずれの場合も類似体が発色団の化学的環境を変化させなかったことを意味する(図6G−I)。この事実にもかかわらず、295nmでの励起時に記録されたKillerOrangeの蛍光スペクトル、したがってトリプトファン励起時に顕著な違いが見られた。この実験では、トリプトファン側鎖と成熟発色団の間で起こる蛍光共鳴エネルギー移動(FRET)または直接励起子結合を追跡し、両者は25Å以下の短い距離に位置する。EGFPおよびNowGFP変異体について、295nm励起を用いて発光スペクトルを測定したところ、トリプトファン発光と並んで強い発色団発光が観察された(図6D、E)。しかしながら、S−Fldを含む変異体は、わずかに大きいトリプトファン特異的放出を示した。この観察は、トリプトファンを含むが成熟した発色団を含まない折り畳まれていないアポタンパク質の計り知れない寄与に関連している可能性がある。KillerOrangeでは、トリプトファン特異的発光の実質的に増加したことが見られ、励起エネルギー移動または励起子結合の予想されるメカニズムを介した蛍光消光の欠如が示された。プロリンおよびS-Flpを含むタンパク質変異体は、高い量子収率の好まれる赤方偏移蛍光特徴と共に、同等のトリプトファン発光を示した。対照的に、Dhpを含む変異体は、おそらく軽微な構造的影響による発色団蛍光強度の劇的な減少を示した(図6F)。
次に、アンフォールディング/再生実験を行うことで、タンパク質の折り畳み特性を比較した。蛍光発光スペクトルは、折り畳まれた状態で記録され(プロトコルセクション5)、化学変性後、続いて、リフォールディングの過程において、24時間の期間にわたってモニターされた(プロトコルセクション6)。スペクトルは、関連する波長(295nm)および発色団の吸光度スペクトルの最大値の両方で励起時に記録され、得られた蛍光は各タンパク質の最大値に正規化されたものとして提示される(図7)。プロトコルの最後に、我々はEGFP変異体がリフォールディングする可能性がある一方で、NowGFPおよびKillerOrange変異体は、一度変性すると展開されたままであることを観察した(データは示されていない)。したがって、元の蛍光タンパク質のリフォールディング能力は大きく変化した。注目すべきは、KillerOrangeは、ヒドロゾアン染色体タンパク質変異体KillerRed65,71から始まる光増感剤として開発されており、そのリフォールディングは、堅牢なβバレル構造にもかかわらず、典型的には遅れている。我々の実験では、トリプトファン特異的蛍光は再生後に大きかったものの、野生型EGFP発色団蛍光は部分的にしか回復しないことを見出した(図7A、D)。本質的に同様の挙動が、Dhpを含有する変異体において観察された(図7C、F)。S-Flp含有EGFPにおいても、トリプトファン特異的波長295nmで励起を行った場合も同様の結果が観察された(図7B)。驚くべきことに、発色団が488nmで励起されたときに蛍光がはるかに高い伸びに回復した(図7E)。S-Fldは、他の2つのバリアントと比較して、リフォールディングの収率がはるかに優れているようです。しかし、この有益な効果は、未知の分子相互作用のために295nm励起を使用した場合には見られなかった。
続いて、リフォールディング速度を、トリプトファンおよび発色団の両方の蛍光を別々に記録することによってモニターし、一方、プロセスのエンドポイントは、再生開始後24時間で決定した。EGFP変異体のみが比較的速いリフォールディング動態を示し、確実に評価することができたが、変性したNowGFPおよびKillerOrange変異体はいずれも、さらなる定量的測定を可能にする値に回復することはできなかった。EGFPでは、トリプトファン放出の回復は発色団放出の回復(1,500秒で完了)と比較して2倍の速さ(750秒で完了)であり、基礎となるプロセスの複雑さを示しています(図8)。両方の励起波長において、リフォールディング速度は、文献データ25と一致して、S−Flpの存在によって上昇した。同時に、Dhp含有変異体は、野生型に類似したリフォールディングプロファイルを示した。
図1:緑色蛍光タンパク質(GFP)構造足場、発色団構築、プロリン立体配座遷移および合成類似体を本研究で用いた。(A) GFPの構造は、ほぼ完全なバレル(すなわち、寸法4.2nm×2.4nmの「缶」)を形成するβストランドからなり、両端はαらせん状の蓋で蓋をしている。27kDaのGFPタンパク質は、11本のβ鎖、2つの短いαヘリックス、中央の発色団からなる三次構造を示す。隣接するプロリンの立体配座状態は発色団形成に関連している。(b)発色団の自己触媒的成熟 (縮合) は、残基Ser65、Tyr66、およびGly67で起こり、いくつかのステップで進行する:まず、ポリペプチド骨格のねじり調整により、Thr65のカルボキシル炭素をGly67のアミド窒素に近接させる。次いで、複素環イミダゾリン−5−オン環系の形成は、グリシンのアミド窒素によるこの炭素原子への求核攻撃およびその後の脱水時に起こる。最後に、分子状酸素によるチロシンα−β炭素結合の酸化がイミダゾリン環系の共役系の延長をもたらし、最後にチロシンフェニル環およびそのパラ酸素置換基を含むときに、系は目に見える蛍光を得る。得られたパラヒドロキシベンジリデンイミダゾリノン発色団はβバレルの中心にあり、バルク溶媒から完全に分離される。(c)1)プロリン環 ( パッカー)および2)前述のアミド結合の骨格構造式および形状は、プロリン残基の主な立体構造遷移を表す。 (D) この作業で用いたプロリン類似体を、指定されたプロリンリングパッカーと共に使用する。この図は、ChemDrawとDiscovery Studio Visualizerを使用して生成されました。GFP 構造は、PDB 構造項目 2Q6P からのものです。 この図の拡大版を表示するには、ここをクリックしてください。
図2:本研究で用いた蛍光タンパク質 パネルは、蛍光タンパク質の3つの異なる変異体(EGFP、NowGFP、およびKillerOrange)の典型的なβバレル構造のリボン表現を示し、リボン色は各変異体の蛍光発光の色を表す。プロリン残基(1文字のコード)は棒として強調表示され、適切な位置に注釈が付けられます。発色団は、初期アミノ酸組成を太字で示している。すべての構造表現は、EGFP用の2Q6P、NowGFP用の4RYS、KillerOrange用の4ZFSのPDB構造エントリに基づいてPyMolで生成されました。 この図の拡大版を表示するには、ここをクリックしてください。
図3:非正準プロリン類似体の残基特異的組み込みのためのSPI法のフローチャート提示。 発現プラスミド上に目的の遺伝子を有するプロリン要求性 大腸菌 (E. coli)宿主株を、20個の正準アミノ酸すべてを含む定義された最小培地中で、細胞培養物が中間対数増殖段階にある〜0.7のOD600 に達するまで増殖させる。細胞を回収し、19個の正準アミノ酸およびプロリン類似体を含む新鮮な最小培地に移す。インデューサーの添加後、タンパク質発現を一晩行う。最後に、標的タンパク質を細胞溶解によって単離し、さらなる分析の前に精製する。プロトコールの変形例において、細胞を、19個の正準アミノ酸を含む定義された最小培地中で増殖させ、プロリンを限られた量(例えば、他のアミノ酸の濃度の5分の1)で添加する。この測定により、細胞は対数増殖期を出る前に培地中のプロリンを排出し、続いて類似体が添加され、目的のタンパク質産生が誘導される。 この図の拡大版を表示するには、ここをクリックしてください。
図4:EGFP、NowGFP、およびKillerOrange変異体の発現解析。(a) 発現培養物1mLからの細胞ペレットを、OD600 =2に正規化する。 (B) EGFP、( C) NowGFP、および (D) KillerOrange変異体のSDSページ分析。各蛍光タンパク質誘導体の可溶性画分(S)および不溶性画分(I)を15%アクリルアミドゲルにロードし、ならびに可溶性タンパク質のIMACから溶出した画分(E)をロードした。PageRuler Unstained Protein Ladderは、(M)で表記されたレーンにおけるマーカー(M)として使用した。特定のタンパク質の予想される領域がフレーム化される。プロリン位置に組み込まれたアミノ酸は、Pro、R−Flp、S−Flp、およびDhpである( (A) 細胞ペレットでは、Dhpの代わりにDfpを組み込んだ蛍光タンパク質変異体が示されている)。ゲルは、1%(w / v)クーマシーブリリアントブルーによって染色された。 この図の拡大版を表示するには、ここをクリックしてください。
図5:蛍光タンパク質変異体の質量分析。(a)H6タグ付きEGFP(黒)、S-Flp-EGFP(オレンジ色)、およびDhp-EGFP(シアン)の代表的なデコンボリューションされたESI−MSスペクトルを、主要な質量ピークの位置を数値(Da)として提供した。H6タグ付きタンパク質の計算された分子量[M + H]+は、EGFP 27,745.33Da(観察された27,746,15Da)についてである。S-Flp-EGFP 27,925.33 Da(観察された27,925.73 Da);Dhp-EGFP 27,725.33 Da(観察された27,726.01 Da)について。(B)H6タグ付きNowGFP(黒)、S-Flp-NowGFP(オレンジ色)、およびDhp-NowGFP(シアン)の代表的なデコンボリュートESI−MSスペクトルを、主要な質量ピークの位置を数値(Da)として提供した。H6タグ付きタンパク質の計算された質量は、NowGFP 27,931.50Da(観察された27,946.46Da;〜16Daの差はおそらくタンパク質中のメチオニンの酸化によるものである)である。S-Flp-NowGFP 28,129.50 Da(観測値 28,130.08 Da);Dhp-NowGFP 27,909.50 Da(観測値 27,910.22 Da)の場合。(C)H6タグ付きキラーオレンジ(黒)、S-Flp-キラーオレンジ(オレンジ色)、およびDhp-KillerOrange(シアン)の代表的なデコンボリュートされたESI−MSスペクトルを、主要な質量ピークの位置を数値(Da)として提供した。H6タグ付きタンパク質の計算された質量は、KillerOrange 27,606.09 Da(観察された27,605.91 Da)である。S-Flp-キラーオレンジ 27,876.09 Da(観測 27,876.08 Da);Dhp-KillerOrange 27,576.09 Da(観測値27,575.93 Da)の場合。約1Daの観測された分子量と計算された分子量との間の偏差は、ESI−MS装置の誤差範囲内にある。この図の拡大版を表示するには、ここをクリックしてください。
図6:蛍光タンパク質変異体の光吸収および蛍光発光スペクトル。正規化されたUV-Vis吸収スペクトルは、EGFPの(A)変異体、(B)NowGFPの変異体、および(C)キラーオレンジについて示されている。 スペクトルは、発色団吸光度の極大(約500nm)まで規格化した。正規化された蛍光発光スペクトルは、EGFPの変異体(D,G)、NowGFPの(E,H)、およびKillerOrangeの(F,I)のものである。(D,E,F)中のスペクトルは紫外光(295nm)による励起時に測定し、(G,H,I)におけるスペクトルについてはそれぞれ励起に488nm、493nm、および510nmの光を使用し、スペクトルは発色団発光のそれぞれの極大値(500nm付近)に規格化した。各パネルにおいて、黒い曲線は天然のプロリンを有する蛍光タンパク質変異体のスペクトルに対応し、オレンジ色の曲線はS-Flp置換タンパク質のスペクトルを示し、青色の曲線はDhp置換タンパク質に対応する。この図の拡大版を表示するには、ここをクリックしてください。
図7:リフォールディング実験におけるEGFP変異体の蛍光発光スペクトル。天然状態および変性およびリフォールディング後の蛍光タンパク質変異体の0.3μM溶液の規格化蛍光発光スペクトル:(A、B、C)中のスペクトルを、紫外光(295nm)による励起時に測定した(A)EGFPについては(A)、(B)はS-Flp-EGFPについて、および(C)はDhp-EGFPについて測定した。(D,E,F)におけるスペクトルは、緑色光(488nm)による励起時に測定した(D)EFGPについては(D)、(E)はS−Flp−EGFPについて、および(F)はDHP−EGFPについて測定した。各タンパク質変異体の天然(黒色の曲線)およびリフォールディングされたサンプル(緑色はEGFPに、オレンジ色はS−Flp−EGFPに、青色はDhp−EGFPにそれぞれ対応する)の発光スペクトルは、適切な天然状態の最大蛍光に正規化される。この図の拡大版を表示するには、ここをクリックしてください。
図8:蛍光を伴うEGFP変異体のタンパク質フォールディングおよび発色団成熟のモニタリング。(a )Trp蛍光(発光は330nmとした)の領域における蛍光発光を紫外光(295nm)で励起した際に記録した。(b)緑色光(488nm ) による励起時の発色団発光領域における蛍光振幅の発達。時間依存性の蛍光トレースを、モニタリング間隔の終了時に到達した蛍光振幅に従ってユニティ(100%)に正規化した。各パネルにおいて、黒い曲線は天然のプロリンを有する蛍光タンパク質変異体のスペクトルに対応し、オレンジ色の曲線はS-Flp置換タンパク質のスペクトルを示し、青い曲線はDhp置換タンパク質に対応する。 この図の拡大版を表示するには、ここをクリックしてください。
建てる | アミノ酸配列(下線付きの6xHisタグ): | |||
EGFP-H6 | MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP WPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTR AEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVN FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDH MVLLEFVTAAGITLGMDELYKHHHHHHHH | |||
H6-NowGFP | MRGSHHQHHHHGSVSKGEKLFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGK MSLKFICTTGKLPVPWPTLKTTLTWGMQCFARYPDHMKQHDFFKSAMPEGY VQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGVDFKEDGNILGHKLEYN AISGNANITADKQKNGIKAYFTIRHDVEDGSVLLADHYQQNTPIGDGPVLLPD NHYLSTQSKQSKDPNEKRDHMVLLEFVTAAGIPLGADELYK | |||
H6キラーオレンジ | MRGSHHHHHHGSECGPALFQSDMTFKIDGEVNGQKFTIVADGSSKFPH GDFNVHAVCETGKLPMSWKPICHLIQWGEPFFARYPDGISHFAQECFPEG LSIDRTVRFENDGTMTSHHTYELSDTCVVSRITVNCDGFQPDGPIMRDQ LVDILPSETHMFPHGPNAVRQLAFIGFTTADGGLMMGHLDSKMTFNGSR AIEIPGPHFVTIITKQMRDTSDKRDHVCQREVAHAHSVPRITSAIGSDQD |
表1:標的タンパク質の一次構造。 彼のタグは各シーケンスで下線が引かれています。
λ [nm] | ε [M-1·cm-1] (EGFP) | ε [M-1·cm-1] (S-Flp-EGFP) | ε [M-1·cm-1] (Dhp-EGFP) |
488 (≡ CRO) | 31,657名(±1,341) | 22,950名(±290名) | 27,800(±542) |
280 (≡ Tyr+Trp) | 20,116 (± 172) | 23,800(±715) | 17,300(±554) |
吸光係数ε(M-1・cm-1)の値は、既知のタンパク質濃度を用いて適切なEGFP変異体のUV-Vis吸収スペクトルを記録して計算する。280nmにおける選択波長は、芳香族残基、チロシンおよびトリプトファンの最大吸光度に対応し、そして488nmは発色団吸光度波長を表す。 |
表2:選択された波長におけるEGFP変異体の消衰係数(ε) 吸光係数ε(M-1・cm-1)の値は、既知のタンパク質濃度を用いて適切なEGFP変異体のUV-Vis吸収スペクトルを記録してから計算される。280nmの選択波長は芳香族残基、チロシン、およびトリプトファンの最大吸光度に対応し、一方488nmは最大発色団吸光度波長を表す。
補足資料:ストック溶液およびバッファーの準備 このファイルをダウンロードするにはここをクリックしてください。
自然界では、タンパク質の構造および機能を有する操作は、典型的には、突然変異、すなわちタンパク質配列中の特定の位置におけるアミノ酸同一性の交換をもたらす現象のために起こる。この自然なメカニズムは、突然変異誘発の形でタンパク質工学のバイオテクノロジー的方法として広く適用されており、プロセスに関与する20の正準アミノ酸のレパートリーに依存しています。しかし、プロリン残基の交換は問題である。その特殊な骨格グループアーキテクチャのために、置換72のための残りの19残基とはほとんど交換できない。例えば、プロリンは、最も一般的な二次構造、すなわちαヘリックスおよびβ鎖との適合性が悪いため、ポリペプチド配列における二次構造ブレーカーとして典型的に知られている。このプロリンの特徴は、残基が共通のレパートリーから別のアミノ酸に変異すると容易に失われる。プロリンをその化学的類似体で置き換えることは、その特定の立体配座遷移にバイアスを課したり、分子体積および極性の変調を生じさせながら、親プロリン残基の基本的な骨格特徴を維持することを可能にする代替アプローチを提供する。例えば、ヒドロキシ−、フルオロ−、アルキル−、デヒドロプロリン、可変環サイズおよびそれ以上を有する構造などの類似体構造を有する細菌培養物を供給することができ、したがって、特定のプロリン残基変化を含むタンパク質の産生を容易にする。
この研究で記載された選択圧取り込み(SPI)法は、標的タンパク質中のすべてのプロリンを関連する化学的類似体でグローバルに、すなわち残基特異的に置換することを可能にする。この方法の重要性は、SPIが一般的な突然変異誘発技術ではアクセスできない配列変化を作り出すことを可能にするという事実によって反映される。例えば、この研究で実証されているように、典型的には1つまたは2つの原子置換/欠失/付加を超えないかなり小さな構造変化を含む標的タンパク質の産生を可能にする。このようなタンパク質修飾は、「原子変異」73,74と呼ばれる。GFPのような蛍光タンパク質において、この分子侵入の結果は、フォールディングの速度、局所極性、タンパク質パッキング、関与する構造的特徴の安定性に見ることができる。吸光度および蛍光特性の変化は、タンパク質の折り畳みおよび残基微小環境への影響のために間接的に生じる。SPIによって行われる分子変化の精度は、プロリンの他の正準残基への変異と比較して、典型的にははるかに高く、後者は典型的にはタンパク質の折り畳み、産生、および単離に有害である。
製造方法として、SPIアプローチは、天然アミノ酸の化学的類似体に対するアミノアシル−tRNA合成酵素ポケットの基質耐性を使用する。合成酵素はアミノ酸構造の正しい同定を担当し、タンパク質への取り込みは翻訳プロセスの下流で行われます。装置的には、SPIにおけるタンパク質産生、単離、および精製は、他の組換えタンパク質発現技術に典型的な方法で行われる。しかし、以下のようにプロトコルにいくつかの追加があります:置換のためにバインドされているプロリンは、細胞が成長し、それらの無傷の細胞機構を発達させることができるように、発酵プロセスの開始時に提供される。しかしながら、細胞培養は、最大光学濃度に達することを許されず、細胞をタンパク質発現に最適な対数段階に保つ。この時点で、SPI方式には2つの大きなバリエーションがあります。最初のものでは、プロリンの濃度は、プロリンの枯渇が外部からの侵入なしに起こるように、初期増殖培地(化学的に定義された培地)において調整される。細胞は、対数増殖期を出る前に培地中のプロリンを排出し、続いて類似体を添加し、目的のタンパク質産生を誘導する。本方法の第2バージョンでは、細胞は、それらの対数段階の途中までプロリンを含む培地中で増殖される。この時点で、細胞を取り出し、プロリンをもはや含まず、類似体のみを含む別の培地に物理的に移し、その後に目的のタンパク質を誘導すべきである。両方のバージョンにおいて、類似体およびタンパク質誘導試薬は、予め増殖した細胞に提供される。野生型タンパク質の単離精製は、変異体の場合と同様に行われる。原則として、利用可能なすべての栄養要求性株を発現宿主として使用することができる。それにもかかわらず、最も適切な宿主を特定するための発現試験が推奨される。また、異なる化学的に定義された培地の試験を使用して、タンパク質収量を最適化することができます。
SPIのために考慮する必要がある化学類似体に関して、溶解度および濃度などの特定の要件がある。アミノ酸の代謝利用可能性および取り込みは、培地中に溶解した分子の数に依存する。特定の化合物の溶解度を高めるために、微酸性またはアルカリ性の条件が選択され得る。人工分子はそれらの細胞毒性のために増殖阻害効果を引き起こし得るので、細胞ストレスを避けるために濃度を最小に下げるべきである75。
SPIの小さな弱点は、交換する必要があるポジションの数が増えたことで、法人化効率が低下することです。原理的には、部位特異的変異誘発法による標的生体分子内のアミノ酸頻度の低下は、この問題を解決することができる。しかしながら、所望のタンパク質の構造的および機能的特性は、一次構造を変更することによって影響を受ける可能性がある。
前述のように、SPIは、正準アミノ酸の残基特異的置換を可能にする。これは、非正準アミノ酸が、タンパク質の機能またはフォールディングに不可欠な保存残基を含む、標的タンパク質内の正準アミノ酸のあらゆる位置に挿入されることを意味する。サイト固有の組み込みのための代替方法は、この問題を克服する唯一の可能性です3。過去数十年間、事前定義された部位に修飾残基を含むタンパク質を産生することができる直交対法が開発されてきた。この方法の最も一般的な改変は、終止コドン抑制として知られている。この方法は、合成アミノ酸76の部位特異的取り込み専用の工学的直交翻訳システムに基づいている。異なる側鎖修飾を有する200以上のアミノ酸が、このアプローチを用いて今日までタンパク質に組み込まれている77。しかしながら、これらの翻訳系は、標的タンパク質へのプロリン類似体の挿入にはまだ適していない。さらに、アミノアシル-tRNA合成酵素のバックグラウンド乱交性は、典型的には、操作された翻訳系に残っているため、軽微なアミノ酸改変の場合、この方法の性能は低いと考えられる。
SPIを用いて、我々は多数のβバレル蛍光タンパク質変異体を作製し、プロリンとその非天然類似体との交換の結果を研究した。R-FrpおよびDfpによるプロリン置換の場合、発現宿主によって機能不全タンパク質が産生された。この効果は、タンパク質のミスフォールディングによって生成される可能性が高い。後者は、R−Flpによって促進されるC4−エキソ立体構造に由来する可能性があり、これは親タンパク質構造27によって好まれない。Dfpでは、ミスフォールディングは、プロリン残基27におけるトランス・ツーシスペプチド結合異性化の速度の低下によって生じる可能性が高い。後者は、βバレル形成およびその後の発色団成熟に影響を及ぼすタンパク質フォールディングの速度論的プロファイルにおける制限ステップの1つであることが知られている。実際、R-FrpおよびDfpの両方のアミノ酸について、タンパク質産生は凝集した不溶性タンパク質をもたらした。その結果、発色団形成は起こらず、蛍光は完全に消失した。しかし、S-FldpおよびDhpでは、適切なタンパク質成熟が観察され、その結果、各アナログ/タンパク質の組み合わせについて蛍光タンパク質サンプルが得られた。タンパク質の吸光度および蛍光特徴のいくつかの変調にもかかわらず、これらは野生型タンパク質のものと大部分が類似したままであった。アミノ酸置換の効果は、リフォールディング動態研究において明らかにされた。モデル研究は、この残基がトランス・ツー・シスアミド回転速度にいくらかの改善をもたらし、C4-endo立体配座の形成につながる可能性があることを示している。これらの因子はいずれも、EGFPにおけるこの残基の有益な動態学的効果に寄与する可能性が高い。対照的に、Dhpは親タンパク質と最大に類似した動態フォールディングプロファイルを産生した。調査された蛍光タンパク質における単なる原子変異によって生じる結果の多様性は、標的タンパク質の特性を変化させるSPI製造方法の可能性を示している。類似体とのプロリン置換によって誘導されるタンパク質変化は、酵素78、79、80およびイオンチャネル81、82の工学、ならびにタンパク質安定性の一般的な工学においてさらなる意味合いを有する。
SPI法の基本的な制限は、プロリンが関連する類似体と存在する交換におけるその「オールオアノン」モードである。どのプロリン残基を類似体で置換すべきか、どの残基を改変しないままにしておくべきかを正確に選択できることは大きな利点となる。しかしながら、微生物生産宿主を用いてこのような高度な生産を行うことができる技術は存在しないのが現状である。タンパク質83、84の化学合成、ならびに無細胞産生85、86は、位置特異的プロリン修飾を産生することができる2つの代替方法である。それにもかかわらず、それらの操作の複雑さと低い生産収率は、生細胞での生産と比較して劣っています。現在のところ、SPIは、原子変異を有する複雑なタンパク質を製造するための最も操作上簡単で堅牢なアプローチのままである。非天然アミノ酸代替物を導入することにより、プロリン置換体によって生成される蛍光タンパク質のフォールディングおよび光吸収/発光の変化によってここに例示されるように、標的化された方法でタンパク質の特徴を改変することを可能にする。
著者は、すべての利益相反を開示します。
この研究は、ドイツ研究財団(クラスター・オブ・エクセレンス「触媒における統一システム」)からT.F.とNBに、連邦教育科学省(BMBFプログラム「HSP 2020」、TU-WIMIplusプロジェクトSynTUBio)からF.-J.S.に支援されました。とT.M.T.T.
Name | Company | Catalog Number | Comments |
Acetonitrile | VWR | HiPerSolv CHROMANORM ULTRA for LC-MS, 83642 | LC-MS grade required |
Acrylamide and bisacrylamide aqueous stock solution at a ratio of 37.5:1 (ROTIPHORESE Gel 30) | Carl Roth | 3029.1 | |
Agar-agar | Carl Roth | 5210 | |
Ammonium molybdate ((NH4)2MoO4) | Sigma-Aldrich | 277908 | |
Ammonium peroxydisulphate (APS) | Carl Roth | 9592.2 | ≥98 %, p.a., ACS grade required |
Ammonium sulfate ((NH4)2SO4) | Sigma-Aldrich | A4418 | |
Ampicillin sodium salt | Carl Roth | K029 | |
Biotin | Sigma-Aldrich | B4501 | |
Bromophenol blue | Sigma-Aldrich | B0126 | |
Calcium chloride (CaCl2) | Sigma-Aldrich | C5670 | |
Coomassie Brillant Blue R 250 | Carl Roth | 3862 | |
Copper sulfate (CuSO4) | Carl Roth | CP86.1 | |
D-glucose | Carl Roth | 6780 | |
1,2-Bis-(dimethylamino)-ethane, N,N,N',N'-Tetramethylethylenediamine (TEMED) | Carl Roth | 2367.3 | ≥99 %, p.a., for electrophoresis |
1,4-dithiothreitol (DTT) | Carl Roth | 6908 | |
Dichloromethane (DCM) | Sigma-Aldrich | 270997 | |
di-potassium hydrogen phosphate (K2HPO4) | Carl Roth | P749.1 | |
di-sodium hydrogen phosphate (Na2HPO4) | Carl Roth | X987 | |
DNase I | Sigma-Aldrich | D5025 | |
Dowex 50WX8-100 (hydrogen form) | Acros Organics / Thermo Fisher Scientific (Waltham, U.S.A.) | 10731181 | cation exchange resin |
Ethanol | Carl Roth | 9065.1 | |
Formic acid | VWR | HiPerSolv CHROMANORM for LC-MS, 84865 | LC-MS grade required |
Glacial acetic acid | Carl Roth | 3738.5 | 100 %, p. a. |
Glycerol | Carl Roth | 3783 | |
Imidazole | Carl Roth | X998 | |
Hydrogen chlroide (HCl) | Merck | 295426 | |
Iron(II) chloride (FeCl2) | Sigma-Aldrich | 380024 | |
Isopropanol | Carl Roth | AE73.1 | |
Isopropyl β-D-1-thiogalactopyranoside (IPTG) | Sigma-Aldrich | I6758 | |
Lysozyme | Sigma-Aldrich | L6876 | |
Magnesium chloride (MgCl2) | Carl Roth | KK36.1 | |
Magnesium sulfate (MgSO4) | Carl Roth | 8283.2 | |
Manganese chloride (MnCl2) | Sigma-Aldrich | 63535 | |
β-mercaptoethanol | Carl Roth | 4227.3 | |
PageRuler Unstained Protein Ladder | Thermo Fisher Scientific | 26614 | |
Potassium chloride (KCl) | Carl Roth | 6781.3 | |
Potassium dihydrogen phosphate (KH2PO4) | Sigma-Aldrich | P5655 | |
RNase A | Carl Roth | 7156 | |
Sodium chloride (NaCl) | Carl Roth | P029 | |
Sodium dihydrogen phosphate (NaH2PO4) | Carl Roth | T879 | |
Sodium dodecyl sulphate (NaC12H25SO4) | Carl Roth | 0183 | |
Thiamine | Sigma-Aldrich | T4625 | |
Trifluoroacetic acid (TFA) | Sigma-Aldrich | T6508 | |
Tris hydrochloride (Tris-HCl) | Sigma-Aldrich | 857645 | |
Tris(hydroxymethyl)-aminomethane (Tris) | Carl Roth | 5429 | |
Tryptone | Carl Roth | 8952 | |
Yeast extract | Carl Roth | 2363 | |
Zinc chloride (ZnCl2) | Sigma-Aldrich | 229997 | |
L-alanine | Sigma-Aldrich | A7627 | |
L-arginine | Sigma-Aldrich | A5006 | |
L-asparagine | Sigma-Aldrich | A8381 | |
L-aspartic acid | Sigma-Aldrich | A0884 | |
L-cysteine | Sigma-Aldrich | C7352 | |
L-glutamic acid | Sigma-Aldrich | G2128 | |
L-glutamine | Sigma-Aldrich | G3126 | |
L-glycine | Sigma-Aldrich | G7126 | |
L-histidine | Sigma-Aldrich | H8000 | |
L-isoleucine | Sigma-Aldrich | I2752 | |
L-leucine | Sigma-Aldrich | L8000 | |
L-lysine | Sigma-Aldrich | L5501 | |
L-methionine | Sigma-Aldrich | M9625 | |
L-phenylalanine | Sigma-Aldrich | P2126 | |
L-proline | Sigma-Aldrich | P0380 | |
L-serine | Sigma-Aldrich | S4500 | |
L-threonine | Sigma-Aldrich | T8625 | |
L-tryptophan | Sigma-Aldrich | T0254 | |
L-tyrosine | Sigma-Aldrich | T3754 | |
L-valine | Sigma-Aldrich | V0500 | |
(4S)-fluoroproline | Bachem | 4033274 | Make sure that all proline analogs are proline free, check content. Otherwise include a step to consume proline contaminations during expression. |
(4R)-fluoroproline | Bachem | 4033275 | Make sure that all proline analogs are proline free, check content. Otherwise include a step to consume proline contaminations during expression |
3,4-dehydroproline | Bachem | 4003545 | Make sure that all proline analogs are proline free, check content. Otherwise include a step to consume proline contaminations during expression |
4,4-difluoroproline | Enamine | EN400-17448 | Make sure that all proline analogs are proline free, check content. Otherwise include a step to consume proline contaminations during expression |
Conical polystyrene (Falcon) tubes, 15 mL | Fisher Scientific | 14-959-49B | |
Conical polystyrene (Falcon) tubes, 50 mL | Fisher Scientific | 14-432-22 | |
Dialysis membrane, Molecular Weight Cut-Off (MWCO) 5,000 | Spectrum Medical Industries | Spectra/Por MWCO 5000 dialysis membrane, 133198 | |
Immobilized Metal ion Affinity Chromatography (IMAC) column 1 mL, Ni-NTA | GE Healthcare | HisTrap HP, 1 mL, 17-5247-01 | |
Luer-Lock syringe, 5 mL | Carl Roth | EP96.1 | |
Luer-Lock syringe, 20 mL | Carl Roth | T550.1 | |
Luer-Lock syringe, 50 mL | Carl Roth | T552.1 | |
Microcentrifuge tubes, 1.5 mL | Eppendorf | 30120086 | |
Petri dishes (polystyrene, sterile) | Carl Roth | TA19 | |
pQE-80L plasmid vector | Qiagen | no longer available | replaced by N-terminus pQE Vector set Cat No./ID: 32915 |
Pro-auxotrophic E. coli strain JM83 | Addgene | 50348 | https://www.addgene.org/50348/ |
Pro-auxotrophic E. coli strain JM83 | ATCC | 35607 | |
Round-bottom polystyrene tubes, 14 mL | Fisher Scientific | Corning Falcon, 14-959-1B | |
Syringe filter 0.45 µm with polyvinylidene difluoride (PVDF) membrane | Carl Roth | CCY1.1 | |
High-Performance Liquid Chromatography (HPLC) column for LC-ESI-TOF-MS | Sigma-Aldrich | Supelco Discovery BIO Wide Pore C5 HPLC column, 3 µm particle size, 10 cm x 2.1 mm | with conical 0.1 mL glass inserts, screw caps and septa |
HPLC autosampler vials 1.5 mL | Sigma-Aldrich | Supelco 854165 | |
Mass spectrometer for LC-ESI-TOF-MS | Agilent | Agilent 6530 Accurate-Mass QTOF | |
Mass spectrometry data analysis software | Agilent | MassHunter Qualitative Analysis software v. B.06.00 | |
Benchtop centrifuge for 1.5 mL Eppendorf tubes | Eppendorf | 5427 R | |
Cooling centrifuge for 50 mL Falcon tubes | Eppendorf | 5810 R | |
Fast Protein Liquid Chromatography (FPLC) system | GE Healthcare | ÄKTA pure 25 L | |
Fluorescence spectrometer | Perkin Elmer | LS 55 | |
High pressure microfluidizer for bacterial cell disruption | Microfluidics | LM series with “Z” type chamber | |
Orbital shaker for bacterial cultivation | Infors HT | Minitron | |
Peristaltic pump for liquid chromatography (LC) | GE Healthcare | P-1 | |
Ultrasonic homogenizer for bacterial cell disruption | Omnilab | Bandelin SONOPULS HD 3200, 5650182 | with MS72 sonifier tip |
UV-Vis spectrophotometer | Biochrom | ULTROSPEC 2100 | |
UV-Vis/NIR spectrophotometer | Perkin Elmer | LAMBDA 950 UV/Vis/NIR |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved