Method Article
このプロトコルは、網膜変性の有無にかかわらず、マウスレシピエントにおいて、外科的合併症の発生率が低い網膜下細胞移植片を安全かつ正確に送達するための経瞳孔ビジョン誘導経強膜アプローチを提示します。
視細胞と網膜色素上皮(RPE)細胞の移植は、網膜変性疾患の潜在的な治療法を提供します。マウスレシピエントへの治療用ドナー細胞の網膜下移植は、マウスの眼球の体積が小さいために許容される手術スペースが限られているため、困難です。私たちは、マウスレシピエントにおける外因性細胞の網膜下送達を促進するために、直接経瞳孔視力ガイダンスを備えた経強膜外科的移植プラットフォームを開発しました。プラットホームは、桿体に富む Rho:: EGFPマウスおよび錐体に富むOPN1LW-EGFPから収集した網膜細胞懸濁液および3次元網膜シートを使用して試験されました 。NRL-/- マウス。生/死死アッセイでは、両方の形態のドナー細胞で細胞死亡率が低いことが示されました。網膜移植片は、網膜変性症のマウスモデルである Rd1 / NSの網膜下腔への送達に成功し、マルチモーダル共焦点走査型レーザー検眼鏡(cSLO)イメージングによって検出された外科的合併症は最小限に抑えられました。移植後2ヶ月、組織学的染色により、網膜下腔の「成体」桿体および錐体への網膜移植片の成熟が進んでいる証拠が示されました(それぞれ堅牢なRho::EGFP、S-opsin、およびOPN1LW:EGFP発現による)。ここでは、マウスレシピエントの合併症発生率を低く抑えながら、高精度な網膜下分娩を可能にする手術プラットフォームを提供します。この手法は、精度と比較的簡単なスキル習得を提供します。さらに、網膜下細胞移植の研究だけでなく、遺伝子治療を含む他の眼内治療研究にも使用できる可能性があります。
光受容体および網膜色素性上皮(RPE)細胞の移植は、加齢黄斑変性症(AMD)、スターガルト病、網膜色素変性症(RP)などの網膜変性疾患の潜在的な治療法を提供します1,2,3,4,5,6,7 .変性した網膜の罹患した光受容体およびRPE細胞を補充または置換するために、網膜下腔は、宿主の光受容体およびRPE細胞の層状解剖学的構造を考えると、移植標的として特に適している。RPE細胞の網膜下移植の外科的処置は、大型動物8,9,10および臨床試験11,12,13で十分に確立されていますが、光受容体移植研究が直面している課題には、トランスジェニック大型動物モデルの不足や、神経移植に関与する詳細なシナプス形成メカニズムの限られた理解などがあります。 さまざまなタイプの網膜変性変異体を用いた遺伝子改変マウスモデルは、移植の文脈における分子メカニズムを研究し、前臨床段階で効果的な細胞補充療法の開発を導くための有用なツールを提供します14、15、16、17、18。
大型動物(ブタ、サルなど)の比較的大きな眼と小さな水晶体とは異なり、マウスの眼は小さくて大きな水晶体であるため、特に物理的なスペースの制約と限られた直接的な視覚化が主要な課題である網膜下移植では、手術の標的として困難です。
現在のアプローチは、注入経路に基づいて大きく3つのタイプに分類できます。まず、経角膜アプローチの場合、針は角膜を通過して硝子体腔に入り、次いで網膜下腔に通される19,20。この方法を使用すると網膜下分娩を成功させることができますが、前眼部構造(角膜、虹彩、水晶体など)への損傷は、下流のin vivo分析を著しく妨げる可能性のある主要なリスクです。第二に、経硝子体アプローチの場合、針は、扁平部を通って硝子体腔に入り、次いで網膜下腔21に入る。このアプローチは、人間や大型動物に広く使用されています。ただし、げっ歯類では、水晶体が硝子体腔の相対的な体積を占めるため、水晶体が損傷する潜在的なリスクがあります。特に、経角膜プロトコルと経硝子体プロトコルの両方で、網膜下腔に到達するために神経網膜の貫通が必要であり、宿主の網膜に損傷を与え、侵入孔からのドナー細胞逆流のリスクを高めます。第三に、経強膜アプローチ22,23の場合、針は強膜 - 脈絡膜 - RPE複合体を貫通し、網膜下腔に直接入る。このアプローチは、前眼部構造と硝子体腔の潜在的な外傷を軽減します。しかし、宿主の眼底を直接可視化しなければ、経網膜穿刺、RPE剥離、脈絡膜出血による手術失敗が一般的に検出されます。
本研究では、マウスレシピエントにおける網膜下移植のための直接経瞳孔視ガイダンスを用いた経強膜手術プラットフォームを開発した。移植前のドナー網膜シートと細胞懸濁液の生存率の検証が行われました。網膜変性マウスモデルの網膜下腔へのドナー細胞の送達に成功したことが確認された。まれな外科的合併症のみが検出されました。.さらに、網膜移植片に移植された光受容体は生き残り、移植後2か月で「成体」の桿体と錐体に成熟が進んだ証拠を示しました。
すべての動物実験は、National Institutes of Health Guide for the Care and Use of Laboratory Animals(NIH Publications No. 8023、1978年改訂)およびARVO Statement for the Use of Animals in Ophthalmic and Vision Researchに従って実施されました。すべての手順は、ジョンズ・ホプキンス大学の動物管理および使用委員会(承認M021M459)によって承認されました。
1.動物
2. 神経網膜の採取(図1)
注:以下のすべてのステップは、無菌条件下で実行されました。研究ツールと製品のサプライヤー情報は、 材料表に記載されています。
3.ドナー網膜懸濁液を準備します (図1)
4.ドナー網膜シートを準備します(図1)
注:このステップはセクション2に従い、解剖顕微鏡下で実行されます。
5. レシピエントマウスを準備する
6. 網膜移植片の網膜下移植(図2)
注:以下のすべてのステップは、無菌条件下で実行しました。手術器具はオートクレーブ滅菌しました(器具トレイを使用して工具先端を保護し、プランジャーをマイクロシリンジから取り出して、内腔に詰まるのを防ぎます)。研究ツールと製品のサプライヤー情報は、 材料表に記載されています。
7.マルチモーダル共焦点走査型レーザー検眼鏡(cSLO)イメージング
8. 組織学的染色
網膜移植片は網膜下腔への送達に成功し、 in vivoで生存します。
網膜下移植プラットフォームの性能は、ほぼ完全な外核層(ONL)変性により残存網膜が著しく薄くなった6〜8週齢のRd1/NSレシピエントマウスで評価されました。網膜の脆弱さ、錐体視細胞の希少性、およびシートドナーと比較して懸濁液中の細胞の生存率が比較的低いことを考えると、錐体に富むマウス(OPN1LW-EGFP;NRL-/-)14はドナー網膜シートの供給源として使用され、桿体リッチマウス(Rho::EGFP)は細胞懸濁液のドナーとして使用されました。錐体に富む網膜シートと桿体に富む細胞懸濁液は、注射直後の経瞳孔の可視化で見られた網膜下ブレブとホワイトシートによって確認されたように、私たちの外科プラットフォームを使用してすべてのレシピエントマウスの網膜下腔に正常に送達されました。移植の2か月後、マルチモーダルcSLOイメージングを実施して、in vivoでの網膜移植の状態を追跡しました。断面OCTスキャンにより、網膜移植片は網膜下腔で生存し、すべてのレシピエントマウスでONLを再構成することが示されました(図3A)。赤外線画像では、移植されたすべての眼に明らかな白内障は検出されませんでした(図3B)。移植後2カ月の多色反射画像法では、移植された網膜(n = 1/10眼)では、出血を含む他の外科的合併症はほとんど検出されなかった(図3C)。網膜移植片における光受容体の生存と成熟の程度をさらに評価するために、組織学的染色を実施しました。移植された網膜シートにOPN1LW:EGFPおよびS-オプシンを発現する豊富な錐体光受容体が観察されました。同様に、移植された網膜細胞懸濁液は、多数のRho::EGFP+桿体を含むRec+光受容体の大部分をin vivoで示しました(図3D)。移植されていない対照マウスは、まばらな残存錐体光受容体(Rec+)を伴う重度のONL変性を示しました。移植されていないRd1/NS網膜ではEGFPシグナルは検出されませんでした(図3D)。
図1:ドナーの網膜シートと細胞懸濁液を採取する概略図。ドナーのRho::EGFPマウスから網膜細胞懸濁液および網膜シートを採取する重要なステップを示す概略図。明視野および蛍光イメージングにより、解離した細胞の代表的な画像と、Rho::EGFPマウスから単離された解剖シートが示されました。黄色の点線:切開縁。この図の拡大版をご覧になるには、ここをクリックしてください。
図2:Rd1/NSマウスにおける網膜シートおよび細胞懸濁液の網膜下移植の手順。 (A)レシピエントマウス調製の模式図。(B)網膜細胞懸濁液およびシートの網膜下移植を示す主要な外科的処置と対応する図。外科的手順には以下が含まれます:1.前房を貫通します。2.ヒアルロン酸ナトリウムを角膜に落とし、カバーガラスをヒアルロン酸ナトリウムの上に取り付けて、経瞳孔の視覚化を容易にします。3.眼壁の外層を貫通します(強膜-脈絡膜-RPE複合体)。針の貫通角は、図の右上のパネルにあります。4.注射針を挿入します。5.移植片を注入します。代表的な画像は、網膜細胞懸濁液とシートがそれぞれ2人のレシピエントに正常に送達されたことを示しています。アスタリスク:視神経乳頭;赤い矢じり:網膜血管;白い矢じり:貫通した針先。白い矢印:移植された網膜懸濁液またはシート。この図の拡大版をご覧になるには、ここをクリックしてください。
図3:網膜下腔への網膜移植片の送達の成功とin vivoでの生存。 (A)代表的なSD-OCT画像は、2匹のRd1/NSマウスにおいて、移植された網膜シートと細胞懸濁液の網膜下分布をそれぞれ示しました。移植されていないRd1/NSマウスを対照として収集した。関心領域(ROI)は、赤外線(IR)眼底画像上の黄色の点線のボックスで示されます。網膜内は、網膜神経節細胞層(RGC)、内網状層(IPL)、および内核層(INL)の層として指定されます。(B)移植されたRd1/NSマウスの代表的な赤外線(IR)画像では、拡張した瞳孔から白内障は見られませんでした。(C)移植および非移植のRd1/NS眼の代表的な多色反射率(MR)画像。移植された眼球には、出血を含む明らかな外科的合併症は認められなかった。(D)移植(シートおよび懸濁液)および非移植(対照)Rd1/NSマウスの免疫組織化学(IHC)染色。データは、移植後2ヶ月で、視細胞(Rec)、桿体(Rho::EGFP)、L/M錐体(OPN1LW:EGFP)、およびS錐体(S-オプシン)の特異的マーカーを発現する多数の移植光受容体を示しました。レシピエントの網膜椎弓はDAPI染色(青)によって同定された。網膜移植片はEGFPレポーター(緑色)によって同定された。移植されていないマウスの網膜は、まばらな残存錐体光受容体(Rec+)を伴う重度のONL変性を示しました。移植されていないRd1/NS網膜ではEGFPシグナルは検出されませんでした。右の2つのパネルに拡大画像が映し出された。略語:RGC:網膜神経節細胞層;INL:内側の核層。ONL:外側の核層。この図の拡大版をご覧になるには、ここをクリックしてください。
マウスの網膜下移植は、マウスの目のサイズが小さいため、技術的に困難です。本研究では、マウスレシピエントにおける網膜下移植のための簡便で再現性のあるプラットフォームを開発した。このプラットフォームは、ドナーの生存率の保護、網膜下分娩の成功、合併症の発生率の低さを保証します。
ここに描かれている網膜下移植技術は、注射針が眼壁の外層(強膜-脈絡膜-RPE複合体)を貫通する経強膜経路に基づいて開発されました。経角膜19,20および経硝子体21,26,27アプローチと比較して、経強膜アプローチは、前眼部構造および神経網膜を貫通することなく網膜下腔に直接入るため、無害な移植が可能になり、貫通孔からのドナー細胞逆流のリスクが軽減されます。経強膜アプローチの課題は、針先が末端送達部位に到着する前に網膜下腔に沿って伝播するようにすることですが、隣接するRPEおよび脈絡膜層の潜在的な乱れを回避します。これらの目標を達成することは、直接的な視覚的ガイダンスなしに、従来の経強膜アプローチ28,29を通じて達成することは困難です。本研究では、マウスモデルにおける網膜下移植を容易にするために、手術用顕微鏡と網膜の外部照明を用いた経瞳孔視誘導プラットフォームを開発しました。このプラットフォームにより、オペレーターは手術顕微鏡下でレシピエントの眼底をリアルタイムで視覚化することにより、手術プロセスとレシピエントの網膜の状態を追跡できます。例えば、強膜-脈絡膜-RPE複合体の浸透の成功は、経瞳孔可視化による針先の比較的明るい反射率によって簡単に検証できます。重要なことは、経瞳孔の可視化によって導かれると、オペレーターは、針とレシピエント網膜の解剖学的構造(網膜血管や視神経乳頭など)との相対的な位置に応じて、注射の角度と深さを正確に調整できることです。さらに、この技術を使用して材料を正確に投与することで、RPE、脈絡膜外傷、およびその他の外科的合併症を最小限に抑えることができます。実際、経瞳孔の可視化の助けを借りて網膜血管に近接した操作を避けることで、出血を最小限に抑えることができることがわかりました。
ドナー細胞の逆流は、注射後の手術失敗の主な原因です29,30。ドナー細胞の逆流の促進には複数の要因が関与しています。注入されたドナー細胞混合物によって引き起こされるレシピエント眼の高眼圧(IOP)は、眼球外への細胞の逆流を促進する重要な要因です。私たちのプロトコルは、手術開始時に前房の貫通によってレシピエントのIOPを低下させ、硝子体腔から硝子体針を引き抜く前に、水性流体の排出によってIOPが自然に低下することを可能にします。2つ目の要因は、レシピエントの目の中の密封されていない注射トンネルです。注入トンネルからの移植片の逆流を防ぐために、小型のマイクロ注射針(34G)を使用してアイウォールを貫通するときにセルフシールトンネルを作成し、針を引き抜くときに外部トンネル開口部の端を保持する歯付きマイクロ鉗子を使用します。従来の移植では、逆流移植片は急激に発生したり、すぐに消失したりする可能性があるため、ほとんど検出されません。ヒアルロン酸ナトリウムは、カバーガラスを装着すると、ほぼ例外なく角膜から滑り落ち、強硬部位を含む辺縁部と強膜のほとんどを覆う。細胞注入後、硬化部位のヒアルロン酸ナトリウムは、還流した内容物のバルクフロー(もしあれば)を遅くし、手術用顕微鏡で視覚的に検出できるようにするのに役立ちます。さらに、逆流がないことは、細胞懸濁液の網膜下ブレブの恒常性や網膜シートの眼内位置を当社のプロトコルで追跡することでも確認でき、光干渉断層撮影法(OCT)が利用できない検査室に役立つ可能性があります。
移植された網膜シートではかなりの数の視細胞が生存したが、識別可能な細胞の向き、またはシートの向きは検出できなかった。大型動物への3D網膜シートの送達が確立されていますが26,31,32、マウスの網膜下腔は、術中の網膜イメージング機能の欠如と相まって、術中および術後すぐにシートの向きを維持することを非常に困難にします マウスが歩行を取り戻すにつれて、移植された細胞またはシートが不安定になる可能性のある術後直後の期間。
マウスレシピエントの網膜下移植のための直接経瞳孔視力ガイダンスを備えた経強膜手術プラットフォームについて説明します。このプラットフォームにより、高精度の注射と手術合併症の発生率の低減が可能になります。このプラットフォームは、既知の用量の細胞の正確な送達を可能にし、習得が比較的容易で、遺伝子治療を含むさまざまな種類の治療薬の網膜内または硝子体内注射に加えて、網膜下送達を容易にします。
MSSは、Revision Therapeutics、Johnson & Johnson、Third Rock Ventures、Bayer Healthcare、Novartis Pharmaceuticals、W. L. Gore & Associates、Deerfield、Trinity Partners、Kala Pharmaceuticals、Acucelaの有給アドバイザーです。MSSはバイエルから委託研究支援を受けています。これらの取り決めは、ジョンズ・ホプキンス大学の利益相反ポリシーに従って審査され、承認されています。KVLは、コロラド大学の特許出願において発明者として名を連ねています。MSSとYVLは、ジョンズ・ホプキンス大学の特許出願で発明者として名前が挙がっています。
この研究は、NEI R01EY033103 (MSS)、Foundation Fighting Blindness (MSS)、Shulsky Foundation (MSS)、Joseph Albert Hekimian Fund (MSS)、Juliette RP Vision Foundation (YVL)、Research to Prevent Blindness (ジョンズ・ホプキンス大学のウィルマー眼科研究所およびベイラー医科大学のカレン眼科研究所への無制限の助成金) によって資金提供されました。Dr. Malia Edwards (Johns Hopkins University School of Medicine) には、顕微鏡のトレーニングを提供していただき、誠にありがとうございます。
Name | Company | Catalog Number | Comments |
Artificial tears | CareAll | P31447-04 | |
Coverslips (5mm in diameter) | Deckglaser | N/A | |
Goat anti-GFP (FITC) | Abcam | Ab6662 | |
Goat-anti-rabbit Cy3 | Invitrogen | A10520 | |
Insulin syringe (30G) | Easy Touch | 08496-3015-11 | |
Ketamine | VETone Zetamine | AH2017J | |
Live Dead Viability Kit | Thermo Fisher Scientific | L3224 | |
Micro scissor | Harvard Apparatus | 72-8503 | |
Micro smooth forceps | ASICO | AE-4360 | |
Micro toothed forceps | World Precision Instruments | 555041FT | |
Microinjection needle (26G) | Hamilton | 7804-03 | |
Microinjection needle (34G) | Hamilton | 207434 | |
Microinjection syringe | Hamilton | 7633-01 | |
Papain dissociation kit | Worthington Biochemical | LK003150 | |
Petri-dish (35 mm) | Thermo Fisher Scientific | FB012920 | |
Povidone-iodine (10%) | Betadine Solution | N/A | |
Proparacaine Hydrochloride (0.5%) | Keeler | AX0500 | |
Rabbit anti-recoverin | Millipore | Ab5585 | |
Rabbit anti-S-opsin | Millipore | Ab5407 | |
Sodium hyaluronate | Johnson & Johnson Vision | 10-2400-11 | |
Sterile cotton swabs | Puritan | 25-806 2PC | |
Sterile needle (25G) | BD PrecisionGlide Needle | 305122 | |
Sterile towel drapes | Dynarex | 4410 | |
Surgical materials/reagents | |||
Tropicamide ophthalmic solution | Henry Schein | 112-7192 | |
Xylazine | AnaSed Injection | N/A |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved