サインイン

Focused Ion Beams

概要

Source: Sina Shahbazmohamadi and Peiman Shahbeigi-Roodposhti-Roodposhti, School of Engineering, University of Connecticut, Storrs, CT

As electron microscopes become more complex and widely used in research labs, it becomes more of a necessity to introduce their capabilities. Focused ion beam (FIB) is an instrument that can be employed in order to fabricate, trim, analyze and characterize materials on mico- and nano-scales in a wide variety of fields from nano-electronics to medicine. FIB systems can be thought of as a beam of ions that can be used to mill (sputter), deposit, and image materials on micro- and nano-scales. The ion columns of FIBs are commonly integrated with the electron columns of scanning electron microscopes (SEMs).

The goal of this experiment is to introduce the state of the art in focused ion beam technologies and to show how these instruments can be used in order to fabricate structures that are as small as the smallest membranes that are found in the human body.

手順

1. Fabrication of a perforated filter from a 300nm thick silicon oxide membrane comparable in scale to the kidneys' endothelial cytoplasm

  1. Load the as-prepared membrane into the FIB chamber. The membranes are often prepared by professionals (when creating Wheatstone bridges) and can be acquired at semiconductor fabrication sites. To prepare one yourself, photolithography must be used. The details of this process can be seen in the photolithography video of the "Bioengineering Collection" on the JoV

Log in or to access full content. Learn more about your institution’s access to JoVE content here

申請書と概要

This experiment demonstrated how using electron microscopes and focused ion beams enable researchers to manipulate and fabricate microscale structures. The molecular nature of the focused ion beam-material interaction provides FIB with a unique ability to manipulate materials on the micro- and nano-scales. By carefully considering how the beam interacts with the material, mitigating charging artifacts and setting the system for optimal milling quality, a researcher can produce unique patt

Log in or to access full content. Learn more about your institution’s access to JoVE content here

タグ
Focused Ion BeamFIBFabricateTrimAnalyzeCharacterizeMicro And Nano ScalesElectronicsMedicineBeam FormationLiquid Metal IonsVacuumElectromagnetic LensesSputteringImagingSite specific SputteringMillingGallium IonsFilamentVoltage ApplicationKinetic Energy Transfer

スキップ先...

0:08

Overview

1:08

Principles of Focused Ion Beams

4:42

Preparing and Loading the Sample

5:33

Preparing the FIB-SEM

6:36

Milling and Imaging

7:33

Results

8:01

Applications

8:56

Summary

このコレクションのビデオ:

article

Now Playing

Focused Ion Beams

Materials Engineering

8.7K 閲覧数

article

Optical Materialography Part 1: Sample Preparation

Materials Engineering

13.0K 閲覧数

article

Optical Materialography Part 2: Image Analysis

Materials Engineering

8.6K 閲覧数

article

X-ray Photoelectron Spectroscopy

Materials Engineering

21.0K 閲覧数

article

X-ray Diffraction

Materials Engineering

85.5K 閲覧数

article

Directional Solidification and Phase Stabilization

Materials Engineering

6.4K 閲覧数

article

Differential Scanning Calorimetry

Materials Engineering

35.5K 閲覧数

article

Thermal Diffusivity and the Laser Flash Method

Materials Engineering

13.0K 閲覧数

article

Electroplating of Thin Films

Materials Engineering

19.4K 閲覧数

article

Analysis of Thermal Expansion via Dilatometry

Materials Engineering

15.3K 閲覧数

article

Electrochemical Impedance Spectroscopy

Materials Engineering

22.6K 閲覧数

article

Ceramic-matrix Composite Materials and Their Bending Properties

Materials Engineering

7.9K 閲覧数

article

Nanocrystalline Alloys and Nano-grain Size Stability

Materials Engineering

5.0K 閲覧数

article

Hydrogel Synthesis

Materials Engineering

23.0K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved