Electrochemical Impedance Spectroscopy

概要

Source: Kara Ingraham, Jared McCutchen, and Taylor D. Sparks, Department of Materials Science and Engineering, The University of Utah, Salt Lake City, UT

Electrical resistance is the ability of an electrical circuit element to resist the flow of electricity. Resistance is defined by Ohm's Law:

Equation 1    (Equation 1)

Where Equation 2 is the voltage and Equation 3 is the current. Ohm's law is useful for determining the resistance of ideal resistors. However, many circuit elements are more complex and can't be described by resistance alone. For example, if an alternating current (AC) is used then the resistivity will often depend on the frequency of the AC signal. Instead of using resistance alone, electrical impedance is a more accurate and generalizable measure of a circuit element's ability to resist the flow of electricity.

Most commonly, the goal of electrical impedance measurements is the deconvolution of a sample's total electrical impedance into contributions from different mechanisms such as resistance, capacitance, or induction.

手順
  1. Obtain a test module and hook it up to the EIS instruments via two electrodes. The test module, pictured in Figure 3, provides data that can be used to model a simple, known circuit. It can be used to confirm that the wires are hooked up to the machine correctly and that all the machinery parts are functioning.

Figure 3
Figure 3: Test module.

Log in or to access full content. Learn more about your institution’s access to JoVE content here

結果

Results of EIS are often presented in a Nyquist plot, which shows real impedance versus complex impedance at each frequency tested. The plot of the experiment ran can be seen in Figure 6.

Figure 6
Figure 6: Screenshot of computer after Nyquist plot was obtained. 

Log in or to access full content. Learn more about your institution’s access to JoVE content here

申請書と概要

Electrochemical Impedance Spectroscopy is a useful tool for determining how a new material or device impedes the flow of electricity. It does this by applying an AC signal through the electrodes connected to the sample. The data is collected and plotted by the computer in the complex plain. With the help of software, the graph can be modeled after specific parts of a circuit. This data can often be very complicated and requires careful analysis. This technique, however complex, is an extremely useful non-destructive mean

Log in or to access full content. Learn more about your institution’s access to JoVE content here

タグ
Electrochemical Impedance SpectroscopyCharacterize MaterialsFlow Of ElectricityMicrobiologyCorrosion ResistanceElectrical ConductivityDetect ChangesSinusoidal Electrical LoadFrequenciesImpedance ComputationEquivalent Circuit ModelTotal Electrical ImpedanceResistanceCapacitanceInductionPrinciples And ProceduresCreate Equivalent Circuit ModelsElectrical ResistanceOhm s LawAC CurrentsElectrical Impedance

スキップ先...

0:08

Overview

1:35

Principles of Electric Impedance Spectroscopy

4:21

Measuring and Modeling Impedance

6:20

Calculating Impedance

7:24

Applications

8:28

Summary

このコレクションのビデオ:

article

Now Playing

Electrochemical Impedance Spectroscopy

Materials Engineering

22.9K 閲覧数

article

光学材料グラフィー パート 1: サンプル調製

Materials Engineering

15.2K 閲覧数

article

光学材料学 パート2:画像解析

Materials Engineering

10.9K 閲覧数

article

X線光電子分光法

Materials Engineering

21.4K 閲覧数

article

X線回折

Materials Engineering

87.4K 閲覧数

article

集束イオンビーム

Materials Engineering

8.8K 閲覧数

article

方向固化と位相安定化

Materials Engineering

6.5K 閲覧数

article

微分走査熱量測定

Materials Engineering

36.0K 閲覧数

article

熱拡散率とレーザーフラッシュ法

Materials Engineering

13.1K 閲覧数

article

薄膜の電気めっき

Materials Engineering

19.5K 閲覧数

article

拡張測定による熱膨張の解析

Materials Engineering

15.5K 閲覧数

article

セラミックマトリックス複合材料とその曲げ特性

Materials Engineering

8.0K 閲覧数

article

ナノ結晶合金とナノ粒サイズ安定性

Materials Engineering

5.1K 閲覧数

article

ヒドロゲル合成

Materials Engineering

23.4K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved