Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes the detailed steps for preparing retinal samples for volume electron microscopy, focusing on the structural features of retinal photoreceptor terminals.

Abstract

Volume electron microscopy (Volume EM) has emerged as a powerful tool for visualizing the 3D structure of cells and tissues with nanometer-level precision. Within the retina, various types of neurons establish synaptic connections in the inner and outer plexiform layers. While conventional EM techniques have yielded valuable insights into retinal subcellular organelles, their limitation lies in providing 2D image data, which can hinder accurate measurements. For instance, quantifying the size of three distinct synaptic vesicle pools, crucial for synaptic transmission, is challenging in 2D. Volume EM offers a solution by providing large-scale, high-resolution 3D data. It is worth noting that sample preparation is a critical step in Volume EM, significantly impacting image clarity and contrast. In this context, we outline a sample preparation protocol for the 3D reconstruction of photoreceptor axon terminals in the retina. This protocol includes three key steps: retina dissection and fixation, sample embedding processes, and selection of the area of interest.

Introduction

The retina is densely packed with intertwining neuronal axons and dendrites that form synapses between them1. Microscopy is an indispensable tool for studying retinal anatomy as it has fine, intricate, and small structures. Although electron microscopy (EM) provides unparalleled power to investigate the ultrastructure of subcellular organelles and the accurate localization of specific proteins at the nanometer level2, it produces images limited to the two-dimensional (2D) plane, leading to potential loss of key information.

The development of emerging high-resolution volume electron microscopy....

Protocol

Animal care and use protocols were approved by the Ethics Committee of Wenzhou Medical University and followed the guidelines established by the Association for Research in Vision and Ophthalmology (ARVO). All mice were maintained in a 12-h light and 12-h dark cycle and supplied with a standard chow diet.

1. Retina dissection and fixation

  1. Anesthetize the mice (C57BL/6J, Male, 8-week-old, 20-25 g) by injecting 2,2,2-tribromoethanol (0.25 mg/g of body weight) intrape.......

Representative Results

Figure 1A shows the image of retinal photoreceptor terminals prepared using the traditional chemical double fixation method, and Figure 1B shows the image of retinal photoreceptor terminals prepared using the OTO method. Both were sampled by FIB-SEM. It can be clearly seen that the cell membrane structure can be retained as much as possible by using the OTO method, and even the outline of vesicles can be clearly seen. In addition, the contrast of images obtained.......

Discussion

We implemented the OTO's Volume EM sample preparation protocol to analyze the photoreceptors' terminal structure in retinal tissue. The focus was on detailing the entire procedure, starting from the detachment and fixation of the retina to showcasing the results of 3D reconstruction of photoreceptor axon terminals.

The distinctive feature of retinal tissue, unlike brain tissue, lies in its lack of regional differences. Comprising three layers of neuronal cell bodies and two layers of s.......

Acknowledgements

This work was supported in part by Grants from National Key Research and Development Program of China (2022YFA1105503), State Key Laboratory of Neuroscience (SKLN-202103), Zhejiang Natural Science Foundation of China (Y21H120019).

....

Materials

NameCompanyCatalog NumberComments
2,2,2-TribromoethanolSigma-AldrichT48402
AcetoneElectron Microscopy Science10000
Amira 6.8Thermo Fisher Scientific
CaCl2SigmaC-2661
Embedding moldBeijing Zhongjingkeyi TechnologyGP10590
Epon resinElectron Microscopy Science14900
EthanolSigma64-17-5
GlutaraldehydeElectron Microscopy Science16020
Helios NanoLab 600i dual-beam SEMFEI
L-aspartic acidSigma56-84-8
Lead nitrateSigma10099-74-8
Na2HPO4.12H2OSigma71650A component of phosphate buffer
NaH2PO4.H2OSigma71507A component of phosphate buffer
OsO4TED PELLA4008-160501
ParaformaldehydeElectron Microscopy Science157-8
Potassium ferrocyanideSigma14459-95-1
Sodium cacodylateSigma6131-99-3
Sputter coaterLeicaACE200
ThiocarbohydrazideSigma2231-57-4
Uranyl acetateTED PELLACA96049

References

Explore More Articles

Retinal SamplesVolume Electron Microscopy3D ReconstructionPhotoreceptor Axon TerminalsSample PreparationRetina DissectionFixationEmbeddingArea Of Interest

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved